

UPPSALA UNIVERSITET

Towards GV/m single-cycle THz pulses from undulators

Outline

- Accelerator physics in Uppsala and FREIA Laboratory
- Work on a linac-based THz source
- Concept of generation of single-cycle pulses with undulators
- Optimal tapering
- Proposal for a THz Light at Uppsala

Background: accelerator physics in Uppsala

1940's: The(odore) Svedberg proposes to build a cyclotron

- Gustaf Werner synchro-cyclotron (1947 present)
 - nuclear physics & cancer treatment
- CELSIUS ring (1984 2005)
 - nuclear physics
- External
 - CTF3/CLIC at CERN (since 2005)
 - FLASH/XFEL at DESY (since 2008)
 - ESS (since 2009)
- FREIA laboratory (since 2011)
- Skandion clinic (2015)
 - cancer treatment

European Spallation Source (ESS), Sweden

FREIA: Facility for Research Instrumentation & Accelerator Development

Competent and motivated staff collaboration of physics (IFA)

and engineering (Teknikum).

Funded by KAWS, Government, Uppsala Univ.

Low-energy excitations: D. N. Basov et al., Rev. of Mod. Phys. 2011

7

Combined THz/X-ray source: old design

Workshop on the scientific opportunities of a THz-FEL in Sweden

24-25 November 2014

AlbaNova University Center Stockholm, Sweden

How to generate GV/m singlecycle pulses with MeV bunches?

Single-cycle synchrotron radiation

Vitaliy Goryashko

Single-cycle radiation from a segmented undulator

Single-cycle radiation from a segmented undulator: cont'd

Vitaliy Goryashko

Single-cycle radiation from a segmented undulator

If instead of increasing the distance between the segments I will decrease it, I will recover Takashi's tapered undulator.

Proposal to Generate an Isolated Monocycle X-Ray Pulse by Counteracting the Slippage Effect in Free-Electron Lasers

What is the optimum taper profile? Can one generate just one cycle?

Simple reasoning from Takashi

Suppose that the time profile of the current density is the same as the single-electron field profile

$$g(t) = f(T - t)$$

The convolution boils down to the inverse Fourier transform of the spectral power.

$$E(t) = bn_0 E_0 \mathcal{F}^{-1}[|\tilde{f}(\omega)|^2]$$

Let us optimize $|\tilde{f}(\omega)|^2$ via undulator tapering in order to get as few cycles as possible.

Vitaliy Goryashko

On-axis field in a tapered undulator

$$E_{\omega}(0,z) = -\frac{Q}{c2\pi\sigma_{b}^{2}}\frac{2\mathcal{K}}{\gamma} e^{-\frac{\omega^{2}\sigma_{T}^{2}}{2}} \int_{-L_{u}/2}^{L_{u}/2} \frac{f_{u}(z')\sin[k_{u}z']}{1+i\frac{z-z'}{k\sigma_{b}^{2}}} e^{i\omega\,\Delta t_{e}(z')}dz'$$

$$E_{\omega}^{+} = E_{\omega}^{0} \int_{-L_{u}/2}^{L_{u}/2} g(z') e^{i\Psi(z')} dz'$$

E. Saldin et al. "A simple method for the determination of the structure of ultrashort relativistic electron bunches." NIMA 539.3 (2005): 499-526.

Vitaliy Goryashko

Stationary phase method

$$\lambda = \frac{\lambda_u}{2\gamma^2} \left(1 + \frac{\kappa}{2} f_u^2(z_0) \right),$$

Vitaliy Goryashko

Optimal taper profile

Consider a quasi-half-cycle pulse of the form

$$A(t) = A_0 \left(1 - \frac{t^2}{\sigma_t^2}\right) e^{-t^2/2\sigma_t^2},$$

whose Fourier-transform reads

 $\frac{3}{2}\log\left[1+\right]$

$$A_{\omega} = A_0 \sqrt{\frac{2}{\pi}} \sigma_t^3 \omega^2 \mathrm{e}^{-\sigma_t^2 \omega^2/2}$$

I equate the spectral power of radiation from a tapered undulator S_{ω} to that of the quasi-half-cycle pulse

$$S_{\omega} = |A_{\omega}|^2 \implies \frac{f_u \xi}{f'_u} = L_{\text{eff}} [1 - \alpha(\xi - \bar{\xi})^2], \quad \xi = 1 + \mathcal{K}^2 f_u^2(z_0)/2,$$

It turns out that the minimum number of cycles is 1.5.

Vitaliy Goryashko

Radiation from the optimally-tapered undulator

Parameter	Symbol	Value	
bunch charge (pC)	Q_b	100	
bunch duration (fs)	$\sigma_{ au}$	50	
bunch radius (mm)	r_b	1	
bunch energy (MeV)	U_b	20	
undulator period (cm)	σ_u	6	
number of periods	N _u	15	
undulator parameter	${\cal K}$	2	
linear taper			
emitted energy (uJ)	${\mathcal E}_r$	26	
central frequency (THz)	f_c	7.25	
relative bandwidth	Δω/ω	95%	
optimal taper			
emitted energy (uJ)	\mathcal{E}_r	25	
central frequency (THz)	f_c	9	
relative bandwidth	Δω/ω	105%	

Proposal for a THz Light Source in Uppsala

Wish list for intense THz radiation.

Parameter	Quasi-half-cycle pulses for time- resolved experiments	Narrowband pulses for frequency-resolved experiments
Spectral range (THz)	1.5-15	1.5-15
Pulse duration (ps)	0.1-1	1-10
Pulse energy (mJ)	1000	100
Peak electric field	1	0.1
(GV/m)		
Relative bandwidth	100%	10%
FWHM		
Repetition rate (kHz)	1-100	1-100

+ Polarization control, pump-probe configuration

Vitaliy Goryashko

The source

- it covers the spectral range from 5 to 15 THz, exceeding that of laser-based sources;
- polarization variable from linear to circular or elliptical;
- tunability of the central frequency and bandwidth;
- mutli-kilohertz repetition rate;
- light carrying orbital angular momentum.

Source 1: quasi-half-cycle pulses

Vitaliy Goryashko

Single-cycle THz pulses

Source 2: multi-cycle pump and single-cycle probe

25