Applications of strong-field single-cycle THz pulses

Peter Salén

White Paper on THz Coherent Light Source in Uppsala

Stockholm-Uppsala Centre for

Free Electron Laser Research

Contents

1. Exec	utive Summary	3
2. Intro	duction	4
3. Science Case		7
3.1	Quasi particles and collective excitations	7
3.	1.1 Excitons	7
3.2	Superconductivity	10
3.3	Magnetism and spin excitations	13
3.4	Dirac materials	15
3.	4.1 Graphene	16
3.	4.2 Topological insulators	17
3.5	Surface chemistry	18
3.6	Phase transitions	19
3.7	Semiconductors	21
3.8	Biology	22
3.	8.1 Biophysics	22
3.	8.2 Gas-phase spectroscopy of (bio-)molecules	23
3.	8.3 Biochemistry	24
3.9	Medicine	24
3.10	Conclusions from science case	25
4. Conceptual Design		28
4.1	Layout of the baseline design	28
4.2	The accelerator	29
4.3	Generation of ultra-broadband GV/m THz pulses	30
4.4	Source 1: broadband THz pump	32
4.5	Source 2a: narrowband THz pump	35
4.6	Source 2b: broadband THz probe	36
4.7	X-ray source: optional	37
4.8	Conclusion	40
5. Refei	rences	41

Version 1, February 2016

www.frielektronlaser.se

THz radiation

 $1 \text{ THz} = 300 \ \mu\text{m} = 33 \ \text{cm}^{-1} = 4.1 \ \text{meV} = 1 \ \text{ps}$

THz resonances

- Plasmons
- Phonons
- Collective spin excitations (magnons)
- Collective molecular vibrations
- Excitons in semiconductors

Short THz pulses for strong-field control

THz provides finer tool to control the system compared with optical energies!

Magnetism

Control of spin excitation is relevant for high-speed data storage and processing

T. Kampfrath et al., Nature Phot., 5, 31 (2011)

Surface chemistry

THz couples to surface phonons and vibration of the molecules bound to the surface

Strong-field half-cycle THz pulses (GV/m) => initiate coherent motion =>

control of surface chemistry

No hot electrons as for optical excitation - so more control !

THz-induced CO oxidation: PRL 115, 036103 (2015)

Superconductivity

Photo-induced superconductivity

Josephson plasma edge - drop in r at 60 cm⁻¹ signature of superconductive state

D. Fausti et al., Science 331, 189 (2011)

Superconductivity

Photo-induced superconductivity far above T_c

Signatures observed even up to 300 K !

High average-power (1 W) broadband pulses wanted for probing

W. Hu et al., Nature Mat. 13, 705 (2014)

Superconductivity

X-ray diffraction => lattice structure

R. Mankowsky et al., Nature 516, 71 (2014)

Dirac materials - graphene

Basic building block for other carbon nanomaterials

Exceptional electronic properties and THz transitions -> promising for optoelectronic devices

Graphene is gapless – Bandgap required for many optoelectronic applications

Circ. polarized THz pulses can create and tune a bandgap

H. Calvo *et al., APL* **98**, 232103 (2011)

THz-driven accelerators

High-field single-cycle THz pulses enable

E_{1. linear} High gradient (GeV/m with 10 mJ pulse) **High repetition rate** Segmented **High charge** waveplate $E_{\perp, \text{ radial}}$ THz accelerator e Electrons to THz E-field polarization energy Photoemitted electrons longitudinal + radial THz mirror spectrometer from d.c. gun

E. Nanni et al., Nat. Comm. 6, 8486 (2015)

Biology

Biology

Protein dynamics

Visible light induces folding of PYP – detected by THz absorption

Castro-Camus et al. Chem Phys Lett 455, 289 (2008)

Biological effects of THz radiation?

Titova et al. Biomedical Opt Exp 4, 559 (2013)

Medicine

High water absorption

Suggested THz Light Source

Uniqueness:

- The first THz-source designed specifically for pump-probe experiments
- Covers the range of 1.5 15 THz, exceeding laser-based THz sources
- It will generate quasi-half-cycle pulses with field strength (GV/m) and repetition rate (1-100 kHz) far beyond any existing or planned source

Summary

Strong-field single-cycle THz applications:

- Magnetic switching (3 GV/m. Half-cycle pulses.)
- **Control of surface chemistry** (1 GV/m. Half-cycle pulses.)
- Superconductivity (THz both for pump and probe.)
- High-gradient THz electron acceleration (high field radial polarization.)
- Biology (penetrate water absorption -> high peak power.)