

UPPSALA UNIVERSITET

Generation of giant single-cycle pulses of THz light for controlling matter

Vitaliy Goryashko 2016 Control of matter with THz light

- Overview of low-energy collective excitations
- Switching on and off spin-waves in antiferromagnets
- THz plasmons in graphene
- Control of superconducting transport
- THz dynamics in bacteriorhodopsin
- Generation of single-cycle THz pulses
- Optical rectification
- Transition THz radiation from e-bunches
- Half-cycle THz pulses from an undulator Proposal for a THz Light at Uppsala

Control of matter with THz light

Low-energy excitations: D. N. Basov et al., Rev. of Mod. Phys. 2011

4

Beauty of ultra-short THz pulses

- direct access to low energy degrees of freedom in complex matter
- below optical transitions no parasitic effects from optical pump laser pulses
- low heat deposit
- field effects directly in the time domain

THz	4.1	meV
ps	47.6	Κ
μm	0.39	kJ/mol
cm⁻¹	0.094	kcal/mol
	THz ps µm cm⁻¹	THz4.1ps47.6μm0.39cm ⁻¹ 0.094

THz induced magnetization dynamics in NiO

- easy axis (112)
- Neel temperature 523 K
- peak magnetic field of 0.13 T
- time resolution 8 fs

Vitaliy Goryashko

Dynamics of spins

Switching on and off magnons

An induced magnetization M(t) manifests itself by the Faraday effect

$$\theta_{\rm F}(t) = V d \langle {\bf e}_{\bf k} \cdot {\bf M}(t) \rangle$$

Prediction of spin flipping

Effective Hamiltonian

$$H = -JS_1 \cdot S_2 + \sum_{j=1}^{2} [D_x S_{jx}^2 + D_y S_{jy}^2] + \gamma B(t) \cdot \sum_{j=1}^{2} S_j.$$

Landau-Lifshits-Gilbert eq. of motion $\frac{\partial}{\partial t}S_j = -\frac{\gamma}{1+\alpha^2} \left[S_j \times B_j^{\text{eff}} - \frac{\alpha}{|S_j|} S_j \times (S_j \times B_j^{\text{eff}}) \right],$ Effective

magnetic field

Vitaliy Goryashko

$$\boldsymbol{B}_{j}^{\text{eff}} = \boldsymbol{B}(t) - J\boldsymbol{S}_{3-j}/\gamma + (D_{x}S_{jx}, D_{y}S_{jy}, 0)^{t}/\gamma$$

Tip-enhanced real-space mapping of mid-IR plasmons in graphene (plasmon interferometry)

IR s-SNOM image

 $ω = 1087 \text{ cm}^{-1}, λ = 9200 \text{ nm}$

Courtesy of A. Nikitin

Vitaliy Goryashko

(1) near-field at tip apex excites graphene plasmons(2) plasmons are backreflected at graphene edge(3) tip scatteres interfering fields at tip apex

Spectroscopic mapping reveals plasmon dispersion

Graphene plasmon dispersion on SiC

J. Chen et al., Nature 487, 77 (2012)

Courtesy of A. Nikitin

Vitaliy Goryashko

Light induced superconductivity

Superconducting transport between layers of a cuprate is gated with high-field terahertz pulses, leading to oscillations between superconductive and resistive states, and modulating the dimensionality of superconductivity in the material.

Andrea Cavalleri group

Bacteriorhodopsin is a light-driven proton pump

Bacteriorhodopsin acts as a <u>proton pump</u>; that is, it captures light energy and uses it to move <u>protons</u> across the membrane out of the cell.^[2] The resulting <u>proton gradient</u> is subsequently converted into chemical energy.

Transformation cycle of bacteriorhodopsin

Generation of single-cycle THz pulses

Generation of terahertz pulses by optical rectification

The incoming field E with frequency ω generates a nonlinear polarization P via the second order nonlinear susceptibility.

Vitaliy Goryashko

Matthias Hoffmann, http://mpsd-cmd.cfel.de/research-met-thz-optrect.html

Moving charge in a medium

v > c

Phase matching

 $\cos\gamma=n_{gr}^{vis}\,/n_{ph}^{THz}$

By tilting the optical pulse front, one achieves coherent build up of a THz wave with a long interaction length.

Matthias Hoffmann, http://mpsd-cmd.cfel.de/research-met-thz-optrect.html

Single-cycle terahertz pulses with amplitudes exceeding 1 MV/cm generated by optical rectification in LiNbO₃

Vitaliy Goryashko

Generation of THz pulses through transition radiation

- **Transition radiation** is produced by relativistic charged particles when they cross the interface of two media of different dielectric constants.
- Since the electric field of the particle is different in each medium, *the particle has to "shake off" photons when it crosses the boundary.*

The energy emitted in the spectral range Δf reads

$$W \approx \Delta \omega \; \frac{e^2}{\pi c} [2\log 4\gamma - 1] \quad \gamma = \frac{1}{\sqrt{1 - v^2/c^2}}$$

Single-cycle THz pulses at DESY: 1 MV/cm

- energies up to 100 μJ
- electric fields up to 1MV/cm
- a frequency band from 200 GHz to 100 THz

M. Hoffmann et al., Vol. 36, No. 23 / OPTICS LETTERS 4473

Vitaliy Goryashko

Single-cycle THz pulses at FACET/SLAC: 6 MV/cm

Vitaliy Goryashko

Proposal for a THz Light Source in Uppsala

Wish list for intense THz radiation.

Parameter	Quasi-half-cycle pulses for time- resolved experiments	Narrowband pulses for frequency-resolved experiments
Spectral range (THz)	1.5-15	1.5-15
Pulse duration (ps)	0.1-1	1-10
Pulse energy (mJ)	1000	100
Peak electric field	1	0.1
(GV/m)		
Relative bandwidth	100%	10%
FWHM		
Repetition rate (kHz)	1-100	1-100

+ Polarization control, pump-probe configuration

Vitaliy Goryashko

The source

- it covers the spectral range from 5 to 15 THz, exceeding that of laser-based sources;
- polarization variable from linear to circular or elliptical;
- tunability of the central frequency and bandwidth;
- mutli-kilohertz repetition rate;
- light carrying orbital angular momentum.

Single-cycle synchrotron radiation

Vitaliy Goryashko

Single-cycle radiation from a segmented undulator

Single-cycle radiation from a segmented undulator: cont'd

Vitaliy Goryashko

Proposal to Generate an Isolated Monocycle X-Ray Pulse by Counteracting the Slippage Effect in Free-Electron Lasers

Proposal to Generate an Isolated Monocycle X-Ray Pulse by Counteracting the Slippage Effect in Free-Electron Lasers

Single-cycle radiation from a segmented undulator

If instead of increasing the distance between the segments I will decrease it, I will recover Takashi's tapered undulator.

The source

- it covers the spectral range from 5 to 15 THz, exceeding that of laser-based sources;
- polarization variable from linear to circular or elliptical;
- tunability of the central frequency and bandwidth;
- mutli-kilohertz repetition rate;
- light carrying orbital angular momentum.

Source 1: quasi-half-cycle pulses

Vitaliy Goryashko

Single-cycle THz pulses

Source 2: multi-cycle pump and single-cycle probe

34

Proposal for a THz light source in Uppsala

Parameter	Quasi-half-cycle pulses for time- resolved experiments	Narrowband pulses for frequency-resolved experiments
Spectral range (THz)	1.5-15	1.5-15
Pulse duration (ps)	0.1-1	1-10
Pulse energy (mJ)	1000	100
Peak electric field	1	0.1
(GV/m)		
Relative bandwidth	100%	10%
FWHM		
Repetition rate (kHz)	1-100	1-100

+ Polarization control, pump-probe configuration

Vitaliy Goryashko