

High Luminosity Large Hadron Collider

Roger Ruber FREIA Laboratory Dept. Physics and Astronomy Uppsala University

FREIA Project Meeting - 26 September 2016

European Organization for Nuclear Research

- Founded in 1954, today 22 Member States
- About 11'000 users from all over the world

Roder

- ~ 1100 MCHF annual budget
- 2250 staff members + 1000 associates + 1000 external services

CERN's Mission

- Research & Discovery
 - to push forward the frontiers of knowledge
 - E.g. the secrets of the Big Bang ... what was the matter like within the first moments of the Universe's existence?
- Technology
 - R&D, application and transfer
 - E.g. new technologies for accelerators and detectors; Information technology - the Web and the GRID; Medicine - diagnosis and therapy
- Training
 - scientists and engineers of tomorrow
- Collaborating
 - Unite people from different countries and cultures

CERN Physics Research Program

- ISOLDE and REX-HIE: 'Online' separation of isotopes
 - to study special radioactive nuclei; possible to post-accelerate
- AD: antiproton decelerator
 - provide 'cold' antiprotons to make and trap anti-hydrogen; then do spectroscopy
- n-TOF: low energy 'spallation' neutrons
 - dump high intensity proton beam in lead target and use low energy 'spallation' neutrons (kinetic energy measured by 'time of flight') for high precision measurements of nuclear reactions
- Extracted PS beam:
 - also used for other 'fixed target' experiment measuring the lifetime of $\pi^{+}\pi^{-}$ 'atoms'
- Extracted SPS beam:
 - used to create polarized µ beam for deep inelastic scattering experiment (COMPASS)
- LHC: high energy proton-proton and proton-ion collissions
 - to study elementary particles, fields and their interactions; experimental exploration of the Terascale

CERN Accelerator Complex

LEIR Low Energy Ion Ring LINAC LINear ACcelerator n-ToF Neutrons Time Of Flight HiRadMat High-Radiation to Materials

Large Hadron Collider

LHC Dipoles

Twin Superconducting Dipoles

- 1232 x 15 m Twin Dipoles
- Operational field 8.3 T @11.85 kA (9 T design)
- HEII cooling at 1.9 K
 - 3 km circuits
 - 130 tonnes He inventory
- Field homogeneity of 10-4
 - bending strength uniformity better then 10-3.
 - field quality control (geometric and SC effects) at 10-5.

Dipole line in the ring

Quadrupole And Other Magnets

- 392 Main Quads
 - Two-In-One rated for a peak field of 7 T.
- About 100 other Two-in-One MQs
- 32 MQX (low- β) single bore
 - for luminosity design L= $1 \cdot 10^{34}$ cm⁻²s⁻¹,
 - 70 mm apertures, about 8 T peak field
- A «zoo» of 7600 «small» Sc magnets
 - correctors and higher order magnets
- Large detector magnets
 - ATLAS toroid -25 m long (1.2 GJ) MCS
 - Sextupole CMS solenoid - 12 m long (2.5 GJ) Magnets

Radio Frequency Acceleration

- 400 MHz standing wave RF
- Nominal gradient 5.5 MV/m
 - nominal 2MV per cavity
 - up to 3 MV at 8 MV/m
- Single cell cavities
 - 16 cavities total,
 - 4 cavities per cryomodule,
 - 2 cryomodules per beam.
- Sputtered niobium design (like LEP)

Why Upgrading LHC

LHC / HL-LHC Plan

High Luminosity LHC Project

Started in 2010 as EC-FP7 design study

From FP7 HiLumi LHC Design Study application

The Hilumi LHC Design Study (a sub-system of HL-LHC) is cofunded by the European Commission within the Framework Programme 7 Capacities Specific Programme, Grant Agreement 284404 (APA

The main objective of HiLumi LHC Design Study is to determine a hardware configuration and a set of beam parameters that will allow the LHC to reach the following targets:

A peak luminosity of L_{peak} = **5×10³⁴ cm⁻²s⁻¹** with levelling, allowing:

An integrated luminosity of **250 fb⁻¹ per year**, enabling the goal of **L**_{int} = **3000 fb⁻¹** twelve years after the upgrade. This luminosity is more than **ten times** the luminosity reach of the first 10 years of the LHC lifetime.

Common Terms

Luminosity, interaction rate per unit cross section

•
$$\mathcal{L} = f \frac{N^2}{4\pi\sigma^2}$$

- integrated \mathcal{L} [fb⁻¹]: integrated over time in units of relevant X-section
- Phase space beam size
 - $\sigma^2 = \varepsilon \beta$
 - betatron-function β ; β^* is its value in the interaction point (IP)
 - emittance $\varepsilon \propto 1/p$
- Beta-function
 - $\beta(L) = \beta^* + L^2/\beta^*$
 - beam size squared grows quadratically as we move away (distance L) from the waist
 - Note: the smaller beam we want at the waist, the faster it gets large as we move away from the waist.

12

HL-LHC Main Upgrade Idea

- Want to
 - increase the beam brightness
 - classic solution is to reduce β*
- Beam envelop
 - dark = 2σ ; light = 12σ ,
 - emittance = 3.5 µm
- Collimators
 - for charged (TAS)
 - neutral particles (TAN)
 - protect SC magnets from collision debris
 - reduction of background to experiments

Crabbing

Drawback of small β* is a large crossing angle

- because beam overlap must be minimized until real IP
- causes a reduction of the *R*(β) geometrical luminosity factor
- requires larger aperture size in the inner triplet magnets

Compensate with crab cavity

 and replace inner triplet magnets to increase the aperture

 θ_{i}

HL-LHC Parameters

CERN-2015-005, Table 1-1

Parameter		LHC	HL-LHC 25 ns	HL-LHC 50 ns
Beam energy	[TeV]	7	7	
N _b		1.5x10 ¹¹	2.2x10 ¹¹	3.5x10 ¹¹
N _b		2808	2748	1404
N _{total}		3.2x10 ¹⁴	6x10 ¹⁴	4.9x10 ¹⁴
Beam current	[A]	0.58	1.09	0.89
Crossing angle	[µrad]	285	590	590
β*	[m]	0.55	0.15	0.15
ε _n	[µm]	3.75	2.50	3
Peak luminosity w/o crab	[cm ⁻² s ⁻¹]	1.0x10 ³⁴	7.2x10 ³⁴	8.4x10 ³⁴
Virtual luminosity w/ crab	[cm ⁻² s ⁻¹]	(1.2x10 ³⁴)	19.5x10 ³⁴	21.4x10 ³⁴
Levelled luminosity	[cm ⁻² s ⁻¹]	-	5.0x10 ³⁴	2.5x10 ³⁴
Events/crossing		27	138	135
Levelling time	[h]	-	8	18

FP7-HiLumi classified as «success story» by EC

HL-LHC project breakdown structure

HL-LHC Interaction Region

- Four interaction regions for experiments
 - two (IR1/5) to be upgraded
- Purpose
 - separate the two counter-rotating beams transversely
 - mitigate parasitic crossings
- Experiment IR equals (one side)
 - 60 m focusing channel
 - 21 m drift space
 - 20 m dipole channel

Looking Towards The Collision Point

Looking Over The Shoulder

Conceptual Layout IR Region

HL-LHC Lay-out of the IR

 IR zone has in different strategic points corrector magnets of dipolar field, giving corrections on the horizontal or on the vertical plane.

WP3: Interaction Region Magnets Inner Triplet at ATLAS & CMS

What Is Special

- Magnet apertures of triplet, D1, correctors are large
 - Larger forces
 - At the limit of what is reasonable with the given cryostat (and tunnel) size
- Triplet quadrupoles:
 - Nb₃Sn cable: Power-in-Tube (PIT), Restack Rod Process (RRP)
 - US design split in two 4.2 m long magnets,
 - CERN opted for making a 7.15 long magnet
- Nested correctors:
 - even though the field is only 2 T in each plane, the magnet is not trivial
 - mechanics and double collaring is the challenge

Dipoles & Quadrupoles

- D1 separation dipole, by KEK (JP)
 - 5.6 T, 150 mm aperture (6.6 T peak field)
 - short model prototype reached 300 A less than nominal after 9 quenches at 1.9 K
- D2 recombination dipole, by INFN (IT)
 - 4.5 T, 105 mm aperture (5.1 T peak field)
 - short model prototype test in 2017
- Q1/Q2/Q3 triplet quadrupole
 - 140 T/m, 150 mm aperture (12.1 T peak field)
 - based on Nb₃Sn cable
- Q4 quadrupole, by CEA Saclay (FR)
 - 115 T/m, 90 mm aperture (6.3 T peak field)
 - short model prototype test end 2017

25

Q1-Q2-Q3 ORBIT CORRECTORS MCBXFA, MCBXFB

Possible test at FREIA

- Nested orbit corrector, by CIEMAT (ES)
 - 2.1 T, 150 mm aperture (4.2 T peak field)
 - prototype test 2018 (~1 year delay in design)

OPERATION TEMPERATURE : 1.9 K Inner an Outer magnets are powered INDIVIDUALLY

Q4-D2 ORBIT CORRECTORS MCBRD, MCBRYY

Possible test at FREIA

27

- Double aperture orbit corrector, by CERN
 - 3.0 T, 100 mm aperture (3.8 T peak field)
 - prototype by 2017

MAGNET CHARACTERISTICS

Integrated into	D2	Q4	
Magnet name	MCBRD	MCBYY	
l nom (kA)	1,7		
l max (2*l nom)	3,4		
Max Diameter(mm)	630,0		
Max Length (mm)	1600		
Max Energy magnet (kJ/m)	78,0		
Inductance (mH/m)	29		
Dump (Ohm)	TBC		
Protection Heater	Maybe		
nr of magnets	10	10	

OPERATION TEMPERATURE : 1.9 K The two apertures are powered INDIVIDUALLY

Zoo of Higher Order Correctors

WP4: Crab Cavities & RF

- Boundary conditions
 - aperture size 84 mm
 - max cavity radius ≤ 145 mm
 - nominal deflecting voltage 3.4 MV per cavity
 - resonance frequency 400.79 MHz
- Main design options proposed https://indico.cern.ch/event/136807
 - 4 Rod Crab Cavity (4RCC), Lancaster Univ.
 - Double Quarter Wave (DQW), BNL
 - most advanced design
 - Radio Frequency Dipole (RFD), ODU and SLAC
 - Compact Coated Cavity (CCC), CERN and Politecnico di Torino

Compact Nb-on-Cu Coating Cavity SRF2015-THPB048

- Shape based on ridged waveguide resonator
 - with wide open apertures to provide access to the inner surface of the cavity for coating
 - provides natural damping for HOMs
 - rather low longitudinal and transverse impedances
- Advantage of Nb-on-Cu coating
 - higher surface resistance (RF-loss) but lower quenching probability
 - possibility for more complex and accurate shape by using modern CNC 5-axis milling than solid Nb sheet technology
 - reduced sensitivity for microphonics and Lorenz force detuning

Parameter		
E _{max}	[MV/m]	30
B _{max}	[kA/m]	25
R/Q	[Ohm]	
U _{stored}	[J]	
	FREIR_	Ro

Crab Cavity Design Evolution (~4yr)

Development of new concepts (BNL, CERN, CI-DL-LU, FNAL, KEK, ODU/JLAB, SLAC)

Roger Ruber | High Luminosity Large Hadron Collider | FREIA Seminar 26-Sep-2016

Double Quarter Wave Cavity λ/4 TEM Resonator

- Design by BNL
- Equipped with 3 HOM couplers

Paramete		
\mathbf{f}_{fund}	[MHz]	400
f _{HOM}	[MHz]	579
E _{max}	[MV/m]	44
B _{max}	[mT]	60
R/Q	[Ohm]	400
Ustored	[J]	12

32

Radio Frequency Dipole (RFD) λ/2 TEM Resonator

4 Rod Crab Cavity (4RCC) Four co-linear λ/4 TEM Resonators

- Design by Lancaster University
- Conical resonators for mechanical stability
- Deflection mode is HOM

4 eigenmodes, mode 2 is our crab mode

Falameter		
E _{max}	[MV/m]	32
B _{max}	[mT]	60.5
R/Q	[Ohm]	915
U _{stored}	[J]	

Roger Ruber | High Luminosity Large Hadron Collider | FREIA Seminar 26-Sep-2016

Cavity Tuning

- Warm frequency tuning limited by tuning fixture
- Limiting factor is the strength of NbTi fixture and weld
 - CERN (NbTi), USLARP (Nb with reinforced shape)

Transmission Lines

- Specific transmission lines are being developed to allow expansion due to thermal cycles
- In case of full reflection at the load, maximum standing wave and voltage along the line will be up to twice the nominal forward voltage
 - Vtotal = Vf + Vr
 - With full reflection
 - Vr = Vf
 - So Vtotal = 2 Vf and Pmaximum = 4 Pf
- The source is the HOM, the load is at the air side
- In case of a load failure, there will be full reflection back to the HOM

36

magnetic shield inside cavity helium vessel

Crab Cavity Tests

Possible test at FREIA

- 2 Cavities in 1 cryomodule in SPS to demonstrate
 - deflection action and verification of cavity control,
 - operation without crab cavity action ("invisibility" to the beam),
 - by counter-phasing two cavities or by de-tuning,
 - non-correlated operation,
 - trigger quench in one without inducing quench in the other,
 - that the crab cavities are a high availability RF system,
 - performance of crab cavities with high intensity beam,
 - effect of crab cavity noise to the beam,
 - may trigger the necessity of a wide-band feedback system including pick-ups and kicker elements,
 - test techniques for beam-based crab cavity qualification in HL-LHC.
- 1 or 2 Cavities in HNOSS to study
 - fast failure (quench) modes including non-correlated operation,
 - prototype tetrode based amplifier system (IOT system is new baseline).

Planning

WP4: Additional RF System Upgrades Under Discussion

- Harmonic RF system
 - 200 MHz sub-harmonic system will improve the luminosity by
 - improved capture efficiency of longer SPS bunches with very high intensity (note: SPS works at 200 MHz)
 - 800 MHz higher harmonic system to reduce beam-induced heating, intra-beam scattering, improve longitudinal beam stability by
 - changing the bunch profile
 - increasing the synchrotron frequency spread
- Transverse damper
 - transverse feedback system to damp beam oscillations originating from injection and/or impedance
 - preserve beam intensity and emittance
 - present system bandwidth 20 MHz, increase might be useful for HL-LHC

WP7: Machine Protection

PhD Student at HEP/FREIA

41

- Stored energy ~700 MJ per beams
 - 2.2x10¹¹ p/bunch, 25 ns bunch spacing, 2748 bunches, 7 TeV
 - for LHC it is ~362 MJ per beam
- Uncontrolled beam loss can cause severe damage
 - nominal LHC beam can penetrate 20 m long copper block
 - accident could happen if extraction kickers deflect at incorrect angle
- Necessary to
 - review LHC damage studies with new parameters
 - extend to new failure scenarios related to
 - optics modifications
 - new hardware components: crab cavities, wire scanners

WP11: 11 T Dipole

a pair of 11 T dipoles will replace some 8.3 T main dipoles (MB)

space for additional collimators in the dispersion suppressor regions

42

WP17: Civil Engineering

With material from the HL-LHC Collaboration and especially L. Rossi, M. Bajko, R. Calaga, J. Delayen, E. Montesinos HL-LHC web site: http://hilumilhc.web.cern.ch/

This work is supported by Uppsala University and CERN

In collaboration with Dept. Physics and Astronomy and Dept. Engineering Sciences, Uppsala University Accelerator and Cryogenic Systems, Orsay, France

Roger Ruber | High Luminosity Large Hadron Collider | FREIA Seminar 26-Sep-2016