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Will consider three related ideas

Cosmic rays of enormous energies are generated in
astrophysical sources
- Acceleration driven by some “central engine”
- This also generates neutrinos

Cosmic rays collide with Earth’s atmosphere
- This gives showers and neutrinos

Cosmic rays collide with the Sun
- Neutrinos



Based on a series of papers:

Atmospheric neutrinos:
* RE, Mary Hall Reno, Ina Sarcevic, arXiv:0806.0418 [hep-ph] (ERS)

« Atri Bhattacharya, RE, Mary Hall Reno, Ina Sarcevic, Anna Stasto,
arXiv:1502.01076 [hep-ph] (BERSS)

«  Atri Bhattacharya, RE, Yu Seon Jeong, C.S. Kim, Mary Hall Reno,
Ina Sarcevic, Anna Stasto, arXiv:1607.00193 [hep-ph] (BEJKRSS)

Astrophysical sources:

* RE, Mary Hall Reno, Ina Sarcevic,
arXiv:0808.2807 [astro-ph]

«  Atri Bhattacharya, RE, Mary Hall Reno, Ina Sarcevic,
arXiv:1407.2985 [astro-ph.HE]

Neutrinos from the cosmic rays interacting in the Sun:

» Joakim Edsjo, Jessica Elevant, Rikard Enberg, Calle Niblaeus, in preparations



Many previous works

Atmospheric neutrinos, e.g.

M. Thunman, G. Ingelman, P. Gondolo, hep-ph/9505417 (TIG)
« L. Pasquali, M.H. Reno, I. Sarcevic, hep-ph/9806428 (PRS)

« A.D. Martin, M.G. Ryskin, A. Stasto, hep-ph/0302140 (MRS)

Astrophysical sources:

* Huge field, thousands of papers...

Neutrinos from the cosmic rays interacting in the Sun, e.g.

M. Thunman, G. Ingelman, hep-ph/92604288



Main message

QCD is crucial for some astrophysical processes:

— Atmospheric neutrinos
— Neutrino-nucleon cross-section @ high energy
— Interactions in astrophysical sources

For example:

. What happens at small Bjorken-x? (Need very small x)
. Forward region (Hard to measure at colliders)

. Fragmentation of quarks — hadrons

. Nuclear effects in pA hard interactions



Atmospheric neutrinos

Cosmic rays bombard upper
atmosphere and collide with air
nuclei

|

Very large CMS energy =2
Hadron production:
pions, kaons, D-mesons ...

Interaction & decay
= cascade of particles

Semileptonic decays

= neutrino flux
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Atmospheric neutrinos

. Cosmic rays bombard upper
atmosphere and collide with air
nuclei

. Very large CMS energy -
Hadron production:
pions, kaons, D-mesons ...

. Interaction & decay
= cascade of particles

. Semileptonic decays
= neutrino flux

Credit: Astropic of the day, 060814 .



Why are we interested?

Atmospheric neutrinos are a background to
extragalactic neutrinos

They are a test beam for neutrino experiments

Can learn about cascades and the underlying
production mechanism

Higher energy pp collisions than in LHC:
can maybe even learn something about QCD



IceCube events

The significance is sensitive to the prompt flux prediction

= Background Atmospheric Muon Flux

102 oo 3 Bkg. Atmospheric Neutrinos (r/K)

Background Stat. and Syst. Uncertainties

— Atmospheric Neutrinos (Benchmark Charm Flux)
— Atmospheric Neutrinos (90% CL Charm Limit)
— Signal+Bkg. Best-Fit Astrophysical E~ Spectrum
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Conventional neutrino flux

. Pions (and kaons) are produced in more or less every
inelastic collision

. 1" always decay to neutrinos (m — p'v, is 99.98 %)

. Butm, K are long-lived (ct ~ 8 meters for r*)
= lose energy through collisions before decaying
= neutrino energies are degraded

. This is called the conventional neutrino flux
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Prompt neutrino flux

. Hadrons containing heavy quarks (charm or bottom)
are extremely short-lived:

= decay before losing much energy
= neutrino energy spectrum is harder

. However, production cross-section is much smaller

. There is a cross-over energy above which prompt
neutrinos dominate over the conventional flux

. This is called the prompt neutrino flux
12



Prompt vs conventional fluxes
of atmospheric neutrinos

Pions & N RS = Charmed
1077 s M tH |
kaons: | = T~ | mesons:
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Prompt flux: Enberg, Reno, Sarcevic, arXiv:0806.0418 (ERS)
Conventional: Gaisser & Honda, Ann. Rev. Nucl. Part. Sci. 52, 153 (2002)
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The calculation has
many ingredients

Incident cosmic ray flux
Atmospheric density

Cross section for heavy quarks in pp/pA collisions
at extremely high energy (pQCD)

Rescattering of nucleons, hadrons (hadronic xsecs)
(scattering lengths)

Decay spectra of charmed mesons & baryons
(decay lengths)

Cascade equations and their solution
(Semi-analytic: spectrum-weighted Z-moments)



Cosmic rays (CR)
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Knees and ankles - seems
natural to associate different
sources with different energy
ranges of the CR flux

Highest energies:
Extragalactic origin?

- GRBs, AGNs, or more
exotic

Lower energies: Galactic
origin?
—-SNRs etc



Incident cosmic ray flux: nucleons
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Calculating the neutrino flux

. To find the neutrino flux we must solve a set of

cascade equations given the incoming cosmic ray flux:

d‘ﬁﬂ:_(p_NJrS(NA_,NY)

adX AN

ddm  dm dm

X =S(NA— MY) odn (E) AM+S(MA MY)
dp,

dX—%S(M ¢Y)

. Xis the slant depth: “amount of atmosphere”
o d,, is the decay length, with o the density of air

A ,, is the interaction length for hadronic energy loss
17



The atmosphere

The distance traveled in the atmosphere is measured by

the slant depth: © ,
X(0,0) = f e’ p(h(?',0)),
¢

where p(h) = poexp(—h/ho)
and ho = 6.4 km
po =2.03 x 1077 g/cm3

Total vertical depth X = 1300 g/crn3
horizontal X = 36,000 g/cm®

The atmosphere consists of “air nuclei” with A=14.5



Z-moments

. We solve the cascade equations by introducing
Z-moments:
© OB, X,0) Ak(E) dn(kA— hY;E',E)
Zih :f dE
E ¢ (E, X,0) Ak (E") dE

. Then

dpy — P Pum dm dn

= — 4+ /M — +t NN —
adX pdy  Apm MMAM NMAN

. Solve equations separately in low- and high-energy
regimes where attenuation is dominated by decay
and energy loss, respectively, and interpolate 19



Particle production

Particle physics inputs: energy distributions

dn(k — j; Ex, Ej) 1 do(kA— jY,Ei,E))
dE; ~ oxa(Ep) dE;
dn(k — j;Ex,E;) 1 dT(k— jY;E;)
dE; “Tr  dE;

along with interaction lengths, or cooling lengths

p(h)
ona(E)na(h)

AN(E) =

- Need the charm production cross section d o /dx.
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Problem with QCD in this process

Charm cross section in LO QCD:

dO’LQ _/ dMCQE
dep ) (w1 + 29

1 4M?Z.
where T12 = 5 (\/x% + + CUF>

)SO-QQ—WE(é)G($17 :LLQ)G(*%Q? IUQ)

S

CMS energy is large: s = 2Em  so X~ x x, <1

(XF=1: E=10>—>x ~ 4- 10> x=0: F=105 — x ~ 6-1073 )
E=10° — x ~ 4107 F=10¢ — x ~ 2-1073

_ E=10" — x ~ 4:107/ E=10" — x ~ 6:107 Y

Very small x is needed for forward processes (large xf!



Problem with QCD at small x

. Parton distribution functions poorly known at small x

. At small x, must resum large logs: a_log(1/x)

. If logs are resummed (BFKL):
power growth ~ x~» of gluon distribution as x — 0

. Unitarity would be violated (T-matrix > 1)

22



How small x do we know?

. We haven’t measured anything at such small x
. E.g. the MSTW pdf has x_. =107¢
. But that is an extrapolation!

. HERA pdf fits: Q2 > 3.5 GeV2and x > 104!

23



Kinematic plane
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Small x

F2 measured at HERA (ZEUYS)
as a function of Bjorken-x.

Note the steep power-law rise

Can this rise continue?

Theoretical answer: no

2
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. Saturation to the rescue:

Parton saturation
ln% A

-
- Number of gluons in the %
nucleon becomes so large |
.

%

.

that gluons recombine

&
_ Reduction in the growth
g % @ DGLAP
7

. This is sometimes called the color glass condensate

. Non-linear QCD evolution: Balitsky-Kovchegov
equation 2



Redoing QCD calculations

« Standard NLO QCD with newest PDFs

« BERSS updated with RHIC/LHCDb input,
uses Nason, Dawson, Ellis and Mangano, Nason, Ridolfi

* Dipole picture with saturation

« Approximate solution of Balitsky-Kovchegov equation
« Update of ERS calc with new HERA fits + other dipoles

e kT factorization with and without saturation

* Resums large logs, a_log(1/x) with BFKL
e Off-shell gluons, unintegrated PDFs (+ subleading...)
« Kutak, Kwiecinski, Martin, Sapeta, Stasto (permutations)

Include scale variations, PDF errors, charm mass, etc
- Plausible upper and lower limits on xsec



Also include nuclear shadowing

Partons are not in a free nucleon, but in a nucleus!
To estimate shadowing, we use PDFs:
« Eskola, Paukkunen, Salgado (EPS) for °O

« nCTEQ15 for N
« CT14 for free protons

I nCTEQI15 — Nitrogen |
405 — Proton -
@ 30 Extended grids
5: NN Standard grids
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Nuclear effects

Executive summary: nuclear shadowing reduces the
flux by 10-30% at the highest energies

Effect is larger on the flux than on the total of(cc)
due to asymmetric X, ,

CT14+EPS09—cc -
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14
----- nCTEQlS—bB -—---- CT14+EPS09-bb -

p—
(\

(o pA/ A)/ Opp

=
o

o
o)

_ .
O
(OS]

10* 10° 10° 107 108 10° 1019
E, [GeV]



Total cc and bb cross sections
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Data from RHIC, LHC and lower energies
Total cross sections well described by NLO QCD,
nuclear shadowing small
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Dipole picture and
kT factorization

106 £ T j T T T T T E 106 3 T
f ] i kr—linear
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These calculations are not valid for lower energies
(larger x) but more or less agree with NLO QCD
for larger energies (relevant here) 3



Differential cross sections (LHCb)

LHCb measured D-meson production at 7 and 13 TeV
Kinematical range: pT <8 GeV, 0 <y <4.5

The flux is mostly sensitive to large y and small pT.

10_ T |||||||| T T T T TTTT
109 GeV

Cumulative fraction of Z-moment " |-

as function of xF: Sl

N&

. : 5
Estimate: 90% of Z , given by = |

y > 4.9 for E,=10° TeV ) BESSEL S e
y > 5.7 for E,;=10" TeV s
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Comparison of NLO QCD
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Prompt v, (=v =) fluxes

We have calculated prompt neutrino fluxes using
all these variations in QCD, nuclear effects, cosmic
ray fluxes.

Also compare to other calculations:
 ERS, 0806.0418

 BERSS, 1502.01076

» Garzelli, Moch, Sigl, 1506.08025
* Gauld, Rojo, Rottoli, Sarkar, Talbert, 1511.06346

- estimate of theoretical uncertainties
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Compare with our BERSS NLO QCD and different cosmic ray fluxes

Difference to BERSS: bb now included, modified fragmentation
fractions, nuclear effects (here: nCTEQ15)

Overall: 30%, 40%, 45% lower than BERSS at 103, 106, 108 GeV *



Influence of nuclear shadowing
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Dipole models
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All three models for the dipole cross section are similar
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And now everything,

using broken
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And what does IceCube say?
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The most recent IceCube limit (3 yrs) on the prompt flux
sets a limit at 90% CL of

0.54 x (a flux with the same shape as ERS and H3p)

L. Radel & S. Schoenen (IceCube), PoS ICRC2015, 1079 40



Intrinsic charm

“Normal” charm parton distribution is generated
from gluon splittings

There may be an “intrinsic” non-perturbative charm
component in the nucleon
[Brodsky, Hoyer, Peterson, Sakai, 1980]

Would contribute charmed mesons at large xF
[See e.g. Thunman et al or Bugaev et al.]

But there is hardly room in the data for that!
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“Astrophysical sources”

Name for various cosmic objects or events which
accelerate charged particles to high energies and
emit high-energy photons, hadrons and/or neutrinos

Examples:

* Supernova remnants

« Gamma ray bursts (GRB)

* Active galactic nuclei (AGN)

E.g. quasars, blazars, Seyfert galaxies,...

* Supernovae with jets



Cosmic accelerators

Inverse Compton

(+Bremsstr.)

protons/nuclei

electrons/positrons radiation fields and matter



Interesting objects: what we think

. Supernovae (SNe):

— Supernova remnants (SNRs) emit cosmic rays
- Some gamma ray bursts (GRBs) are Sne
— Produce some cosmic rays themselves

Black holes:

— Are created in GRBs
— Are the engines behind active galactic nuclei (AGNs)

Gamma ray bursts:

~ Produce cosmic rays of all types (transient source)

. Active galactic nuclei:

- Produce cosmic rays of all types (steady source)



Highest energies:
GRBs and AGNs

. Gamma Ray Bursts are enormously violent
explosions that last for only a few seconds or minutes

— Transient sources, a few a.u. in size

- Emit gamma rays, photons at other energies,
and probably charged particles and neutrinos

- Total energy output comparable to SN but
emitted in much shorter time

. Active Galactic Nuclei mean that the whole galactic
center takes part in accelerating particles

— Constant sources, many lightyears in size



Example: GRB 080319B

NASA. Left: X-ray. Right: optical/UV

Was visible to the naked eye for 30 seconds and
millions of times brighter than brightest SN

Brightest GRB ever seen, z = 0.937 — 7.5 billion years ago!!
(Before our solar system existed.)



GRBs and jets

. In fact most GRBs are very far away (“cosmological
distances”) and thus need to be extremely energetic

(observed up to redshift z= 6-7, where z=7 means
the universe was less than a billion years old!)

. GRBs are believed to be catastrophic events
leading to the birth of a stellar mass black hole

. Black hole drives relativistic outflow in jets



Astrophysical jet
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To sum up:

Standard interpretation:
. GRBs are related to births of black holes

. The “central engine” releases a huge amount of
energy in a small region

. This creates a very dense "“fireball”
. Fireball expands due to trapped radiation pressure

. Relativistic outflow in two opposite jets

. The burst of gamma rays comes from dissipation in
the outflow due to shocks
— synchrotron emission and inverse Compton



Schematic picture

stellar envelope
internal

I -

-
-~
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"~ shocks

ceritral engine (BH)

accretion disc

Relativistic jet inside a collapsing star — may or may
not punch through the envelope

Protons and electrons are shock accelerated in jet

[Fig from Razzaque et al.,



MERGER SCENARIO FORMATION OF A GAMMA-RAY BURST could begin either
with the merger of two neutron stars or with the collapse
of a massive star. Both these events create a black hole

with a disk of material around it. The hole-disk system, in X-RAYS,

UL R -] turn, pumps out a jet of material at close to the speed of ‘L’:EII-?TLE
light. Shock waves within this material give off radiation. JET COLLIDES WITH RADID’
AMBIENT MEDIUM WAVES

' (external shock wave)
GAMMA RAYS .
BLOBS COLLIDE
SLOWER (internal shock
FASTER BLOB ways) —
BLACK HOLE DISK BLOB - »
CENTRAL ;
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PREBURST : —.
GAMMA-RAY EMISSION Lingg
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HYPERNOVA SCENARIO Gehrels et al., Scientific American, Dec. 2002
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Slow-jet Supernovae (SJS)

GRBs: jets with bulk gamma factors of 100s-1000s

The jets punches through the envelope and the
gamma emission is seen as a gamma ray burst

If the jet is slower, it may be stalled and the gammas
are absorbed and thermalized instead

—> this would look like a supernova
but could still generate neutrinos

Razzaque, Meszaros and Waxman called this
“Slow-Jet Supernovae” (SJS)
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Cosmic beam dumps

Charged particles are shock accelerated in the jet:
may collide with protons and photons in the jet and
the surrounding star

Mesons produced in collisions decay to ¥ and v

Waxman & Bahcall (1997) considered high energy
neutrino flux from pions produced in GRBs — many

authors have considered mand K in various sources
(Ando-Beacom, Mészaros-Razzaque-Waxman, Koers-Wijers, many others)

Pions, kaons are cooled before decay
— charmed mesons will persist to higher energies



Photon, neutrino emission

. Neutrinos: Emitted in decay of charged pions m*,
which are copiously produced in hadron
collisions:

pp—mn" +X or py—nm

followed by m" — p*v,
H' =V yve

. Photons: “Hard” (i.e. high energy) photons from e.qg.
py — pr’
m’ — yy
(v,y also from other decays)



Photon mechanisms

Bremsstrahlung:
An accelerated charge In magnetic field:
emits photons: Cyclotron & Synchrotron
electron oy ,‘ (V/C << 1) (V/C ~ 1)
s \ i Relativistic: beaming and time dilation
#
pr()l()n
Electron
®
o itte '/, f — 8 j‘l:;;rltﬁf'(il:: Fir:*.'ld Line
Inverse Compton scattering: Enifed ol

low-energy X-ray
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Images from NASA: Imagine the universe



Astrophysical sources

We consider two kinds of sources as examples:
GRB:
Non-thermal photons and highly relativistic jet

“Slow-jet supernova” (SJS):

Supernova with mildly relativistic jet that doesn't
punch through

Thermal photons

SNe with jets may be common and may help with
blowing up the star

(Razzaque, Meszaros, Waxman; Ando and Beacom)



Neutrino flux from slow-jet SNe
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[RE, M.H. Reno, |. Sarcevic, arXiv:0808.2807]
No cooling of D-mesons

Fall-off is due to maximum proton energy
(we use parameterization of Protheroe & Stanev, astro-ph/9808129)



Neutrino flux from GRB
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Again no cooling of D-mesons

For this particular choice of parameters, charm has a
smaller range where it dominates

Some scenarios have much higher max proton energy



IceCube events from Slow-jet SN
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We proposed charm production in SJS as the source of
lceCube’s events:

A. Bhattacharya, RE, M.H. Reno, I. Sarcevic,
arXiv:1407.2985 [astro-ph.HE]
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Neutrinos from the Sun

Standard search:
Neutrinos from the center of
the Sun from dark matter
annihilation

Standard calculation 20 yrs old:
M. Thunman, G. Ingelman,

hep-ph/9604288

J. Edsjo, J. Elevant, RE,
C. Niblaeus (in prep)
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detector
(interaction)

We use MCeq to compute (conventional) neutrino fluxes
and WimpSim to compute propagation inside the Sun



Conclusions

There are a lot of known and unknown unknowns in
astroparticle neutrino physics

« How large is the astrophysical flux?
*  Where does it come from?
*  What are the backgrounds?

At least for the prompt neutrinos, we think we know
what we don’t know — more accelerator and cosmic
ray data needed!

There are lots of explanations for the lceCube events,
we have one, but there are many others 62



