

Hyperon Spectroscopy and Dynamics with PANDA at FAIR

Karin Schönning, Uppsala University, for the PANDA collaboration

Annual Meeting of the Swedish FAIR consortium (SFAIR) Gothenburg October 27th, 2016

Outline

- Introduction
- The PANDA experiment @ FAIR
- Part I: Hyperon Spectroscopy
- Part II: Hyperon spin dynamics
- Summary
- Time-line

Introduction

Missing in the Standard Model of particle physics:

A complete understanding of the strong interaction.

- Short distances pQCD rigorously and successfully tested.
- Charm scale and above: pQCD fails, no analytical solution possible.

Introduction

- Light quark (*u*, *d*) systems:
 - Highly non-perturbative interactions.
 - Relevant degrees of freedom are hadrons.
- Systems with strangeness
 - − Scale: $m_s \approx 100 \text{ MeV} \sim \Lambda_{\text{QCD}} \approx 200 \text{ MeV}$.
 - Relevant degrees of freedom?
 - Probes QCD in the confinement domain.
- Systems with charm
 - Scale: m_c ≈ 1300 MeV.
 - Quark and gluon degrees of freedom more relevant.
 - By comparing strange and charmed hyperons we learn about QCD at two different energy scales.

Why hyperons?

Hyperon Spectroscopy

- New baryon states?
- Properties of already known states.
- Symmetries in the observed spectrum?

Why hyperons?

Hyperon Spectroscopy

- New baryon states?
- Properties of already known states.
- Symmetries in the observed spectrum?

Hyperon Spin Dynamics

- Reaction mechanism at different energy scales.
- The role of spin in the strong interaction.
- CP violation

The PANDA experiment at FAIR

SIS 100/300 eV SIS18 **30 GeV Protons** p-Linac HESR Cu Target p/s @ 3 GeV 10^{7} PANDA ccelerating RESR/CR **Facility for Antiproton** Collecting Accumulating and Ion Research Precooling 100m

UPPSALA UNIVERSITET

The PANDA experiment at FAIR

The High Energy Storage Ring (HESR)

- Anti-protons within 1.5 GeV/c < p_{pbar} < 15 GeV/c (2.0 < \sqrt{s} < 5.5 GeV)
- Internal targets
 - Cluster jet and pellet $(\bar{p}p)$
 - Foils $(\bar{p}A)$
- High Resolution Mode (HESRr)
 - L = 10³¹ cm⁻² s⁻¹
 - $\Delta p/p < 5.10^{-5}$
 - stochastic + electric cooling < 9 GeV/c
- High Luminosity Mode
 - $-L = 2.10^{32} \text{ cm}^{-2} \text{ s}^{-1}$
 - Δp/p ~ 10⁻⁴
 - Stochastic cooling
- Modularized Start Version
 - L = 10³¹ cm⁻² s⁻¹

The PANDA experiment at FAIR

Beam Dipole

Target Spectrometer

- 4π coverage
- Precise tracking
- PID
- Calorimetry

- Vertex detector
- Modular design
- Time-based data acquisition
 with software trigger

10

Forward Spectrometer

Part I: Hyperon Spectroscopy

Baryons and the quark model

- 1950's and 1960's: a multitude of new particles discovered \rightarrow obvious they could not all be elementary.
- 1961: Eight-fold way, organising spin $\frac{1}{2}$ baryons into octets and spin $\frac{3}{2}$ into a decuplet as a consequence of SU(3) flavour symmetry.
- 1962: Discovery of the predicted Ω⁻ demonstrates the success of the Eight-fold way.

Baryons and the quark model

- The simple (constituent) quark model* was successful in classifying hadrons and describing static properties of hadrons.
- Unable to explain *e.g.*
 - Spin structure of the nucleon.
 - Flavour asymmetry of the nucleon sea.
 - Certain features of the light baryon spectrum**.

*PR 125 (1962) 1067 **PRD 58 (1998) 094030

Baryons and the quark model

- The simple (constituent) quark model* was successful in classifying hadrons and describing static properties of hadrons.
- Unable to explain *e.g.*
 - Spin structure of the nucleon.
 - Flavour asymmetry of the nucleon sea.
 - Certain features of the light baryon spectrum**.

The challenging task of baryon spectroscopy

*PR 125 (1962) 1067 **PRD 58 (1998) 094030

Light baryon spectroscopy

A lot was learned from the great progress in light baryon spectroscopy (pion beams, photoproduction).

Open questions regarding the excited light baryon spectrum:*

- Missing states?
- Order of states?
- Parity doublets?

Degrees of freedom and effective forces?

- 3-quark?
- Quark-diquark?
- Meson-baryon?

Light baryon spectroscopy

Missing states: # of observed states < # of predicted states

- Because there are no such states
- or because they do not couple to $N\pi$ final states?

Strange and charmed hyperons

What happens if we replace one of the light quarks in the proton with one - or many heavier quark(s)?

Strange hyperons

- Are the states missing
 - because they are not there
 - or because previous experiments haven't been optimal for multistrange baryon search?
- PDG note on Ξ hyperons:

"...nothing of significance on Ξ resonances has been added since our 1988 edition."

J^P	(D, L_N^P)	S		Octet members			Singlets
1/2+	$(56,0^+_0)$	1/2	N(939)	A(1116)	£(1193)	E(1318)	
1/2+	$(56,0^+_2)$	1/2	N(1440)	A(1600)	\Sigma(1660)	E(?)	
1/2-	$(70,1_{1}^{-})$	1/2	N(1535)	A(1670)	E(1620)	Ξ(?)	A(1405)
3/2-	$(70,1_1^-)$	1/2	N(1520)	A(1690)	$\Sigma(1670)$	Ξ(1820)	A(1520)
1/2-	$(70,1_{1}^{-})$	3/2	N(1650)	A(1800)	£(1750)	三(?)	
3/2-	$(70,1_{1}^{-})$	3/2	N(1700)	A(?)	$\Sigma(?)$	E(?)	
5/2-	(70,11)	3/2	N(1675)	A(1830)	E(1775)	三(?)	
1/2+	$(70,0^+_2)$	1/2	N(1710)	A(1810)	S (1880)	E(?)	A(?)
3/2+	$(56,2^+_2)$	1/2	N(1720)	A(1890)	S (?)	三(?)	_
5/2+	$(56,2^+_2)$	1/2	N(1680)	A(1820)	S (1915)	E(2030)	
7/2-	$(70,3^{-}_{3})$	1/2	N(2190)	A(?)	$\Sigma(?)$	E(?)	A(2100)
9/2-	$(70, 3^{-}_{3})$	3/2	N(2250)	A(?)	S (?)	E(?)	
9/2+	$(56, 4^+_4)$	1/2	N(2220)	A(2350)	$\Sigma(?)$	三(?)	
			[Decuplet	members	5	
3/2+	$(56,0^+_0)$	3/2	⊿(1232)	£(1385)	Ξ(1530)	Ω(1672)	
3/2+	$(56,0^+_2)$	3/2	∆(1600)	S (?)	5(?)	Ω(?)	
1/2-	$(70,1_{1}^{-})$	1/2	∆(1620)	S (?)	E(?)	\$ (?)	
3/2-	$(70,1_{1}^{-})$	1/2	A(1700)	S (?)	E(?)		
5/2+	$(56,2^+_2)$	3/2	∆(1905)	$\Sigma(?)$	三(?)	 <i>Ω</i> (?)	
7/2+	(56.2+)	3/2	A(1950)	E(2030)	=(?)	Q(2)	

 $\Xi(?)$

 $\Omega(?)$

 $11/2^+$ (56,4⁺) 3/2 Δ (2420) Σ (?)

Baryon spectroscopy world-wide

- A lot of previous and ongoing activity in nucleon spectroscopy (CLAS @ JLAB, CBELSA/TAPS)
- Charmed hyperons often by-product at b-factories (BaBar, Belle, CLEO, LHCb)

• Gap to fill in the strange sector!

Facilities for strange hyperon spectroscopy

- PANDA @ FAIR:
 - Hyperons from $\bar{p}p \rightarrow \bar{Y}^*Y$, $\rightarrow \bar{Y}Y^*$.
 - Large expected cross sections for multi-strange baryons.
 - Clean, well defined final state.
 - Symmetry in hyperon and antihyperon observables.
 - Exclusive measurements \rightarrow low background.
 - All decay modes charged and neutral accessible.

Facilities for strange hyperon spectroscopy

- PANDA @ FAIR:
 - Hyperons from $\bar{p}p \rightarrow \bar{Y}^*Y, \rightarrow \bar{Y}Y^*$.
 - Large expected cross sections for multi-strange baryons.
 - Clean, well defined final state.
 - Symmetry in hyperon and antihyperon observables.
 - Exclusive measurements \rightarrow low background.
 - All decay modes charged and neutral accessible.

PANDA is a strangeness factory: Can fill the gap in the strange sector!

Feasibility study of $\bar{p}p \rightarrow \bar{\Xi}^+ \Xi^{*-}(1820)$

, E-(1820)

- $p_{beam} = 4.6 \text{ GeV/c}$
- Consider the $\Xi^{*-}(1820) \rightarrow \Lambda$ K decay, assume BR = 100%

р

- Assume $\sigma = 1 \ \mu b$
- Simplified MC framework
- Day One luminosity: 10³¹ cm⁻²s⁻¹
- Results:
 - ~30 % inclusive efficiency for $\Xi^{*-}(1820)$
 - ~5 % exclusive efficiency for $\overline{\Xi}^+ \Xi^{*-}(1820)$
 - Low background level
 - ~15000 exclusive events / day

J. Pütz, talk at FAIRNESS²³2016

 π^+

► π⁺,

 $\overline{\mathbf{V}}_{0}$

р

Part II: Hyperon spin dynamics

Or: what can we learn from looking into detail how known hyperons are produced?

Hyperons from *pp* and *pA* reactions

- Polarization a result of interfering amplitudes.
- In hadronic reactions, many contributing sub-processes.
- High energies: total polarization should be 0.
- Data: hyperons produced polarized at high energies
 → contrast to naïve expectations.
- Many contributing amplitudes

 → difficult to pinpoint the source_{0.2}
 of polarization.

Hyperons from $\bar{p}p$ reactions

- Hyperons and anti-hyperons can be produced at low energies
 → fewer amplitudes contributing.
- Symmetry in hyperon and anti-hyperon observables.
- Polarization + other spin observables powerful tools for testing models of production dynamics and structure.

Hyperons from $\bar{p}p$ reactions

Available models based on

i) constituentquark-gluons*

ii) hadrons**

ii) a combination ***

*PLB 179 (1986) 15; PLB 165 (1985) 187; NPA 468 (1985) 669; _** PR**C** 31(1985) 1857; PLB179 (1986) 15; PLB 214 (1988) 317; *** PLB 696 (2011) 352.

Spin observables in $\bar{p}p \rightarrow \bar{Y}Y$

- Vector polarisation P the most straight-forward observable for spin $\frac{1}{2}$ hyperons.
- Strong interactions: normal to the production plane (y-direction)

Spin observables in $\bar{p}p \rightarrow \bar{Y}Y$

Polarisation

Accessible by the parity violating decay: Decay products preferentially emitted along the spin of the hyperon.

> $\Lambda \rightarrow p\pi^{-}$: Proton angular distribution

> $I(\cos\theta_{\rm p}) = N(1 + \alpha P_{\Lambda} \cos\theta_{\rm p})$

 P_{Λ} : polarisation

 α = 0.64 asymmetry parameter

If the decay product of the hyperon is a hyperon, e.g. $\Xi \rightarrow \Lambda \pi$, more information can be obtained from the decay protons of the Λ .

Spin observables in $\bar{p}p \rightarrow \bar{Y}Y$

- Spin $\frac{1}{2}$ hyperons (Λ , Ξ , Λ_c) :
 - Polarisation.
 - Spin correlations and singlet fraction: $SF = \frac{1}{4}(1 + C_{xx} - C_{yy} + C_{zz})$
- Spin $\frac{3}{2}$ hyperons into spin $\frac{1}{2}$ hyperons ($\Omega \rightarrow \Lambda K$):
 - 7 polarisation parameters + degree of polarisation.

$$d(\rho) = \sqrt{\sum_{L=1}^{2j} \sum_{M=-L}^{L} (r_{M}^{L})^{2}}$$

More details in talk by W. Ikegami Andersson (SFS-KF)

CP violation in hyperon decays

- CP violation in baryon decays necessary condition for matter-antimatter asymmetry (Sakharov).
- Standard Model CP violation too small to explain asymmetry
- CP violation never observed for baryons.
- The $\bar{p}p \rightarrow \bar{Y}Y$ process suitable for CP measurements (clean, no mixing)
- If CP valid, $\alpha = -\bar{\alpha}$.
- CP violation quantified by *e.g.*:

$$A = \frac{\alpha + \overline{\alpha}}{\alpha - \overline{\alpha}}$$

- A lot of data on $\overline{p}p \rightarrow \Lambda\Lambda$ near threshold, mainly from PS185 at LEAR*.
- Very scarce data bank above 4 GeV.
- Only a few bubble chamber events on $\overline{p}p \rightarrow \overline{\Xi}\Xi$
- No data on $\overline{p}p \to \overline{\Omega}\Omega$ nor $\overline{p}p \to \overline{\Lambda}_c\Lambda_c$

* See e.g. T. Johansson, AIP Conf. Proc. Of LEAP 2003, p. 95.

- Simulation studies using a simplified MC framework.
- Assume Day One luminosity of the HESR.
- Cross sections of $\overline{p}p \to \overline{\Lambda}\Lambda$ and $\overline{p}p \to \overline{\Lambda}\Sigma^o$ known near threshold.
- $\overline{p}p \rightarrow \overline{\Xi}^+ \Xi^-$ measured with large uncertainty.
- Conservative theoretical predictions of $\overline{p}p \to \overline{\Omega}^+ \Omega^-$ and $\overline{p}p \to \overline{\Lambda}_c^- \Lambda_c^+$

Momentum (GeV/c)	Reaction	σ (μb)	Efficiency (%)	Rate (with 10 ³¹ cm ⁻¹ s ⁻¹)
1.64	$\overline{p}p \rightarrow \overline{\Lambda}\Lambda$	64	10	30 s ⁻¹
4	$\overline{p}p \rightarrow \overline{\Lambda} \Sigma^{o}$	~40	30	30 s ⁻¹
4	$\overline{p}p \rightarrow \overline{\Xi}^+ \Xi^-$	~2	20	2 s ⁻¹
12	$\overline{p}p \rightarrow \overline{\Omega}^+ \Omega^-$	~0.002	30	~4 h ⁻¹
12	$\overline{p}p \rightarrow \overline{\Lambda}_c^- \Lambda_c^+$	~0.1	35	~2 day ⁻¹
				7

- High event rates for Λ and Σ *.
- Low background for Λ and Σ *.

Gain a factor of 100 with inclusive measurement

- Even with conservative cross section estimates, Ω and Λ_c channels are feasible. **
- New efficiency studies using sophisticated MC framework underway.

*Sophie Grape, Ph. D. Thesis, Uppsala University 2009, ** Erik Thomé, Ph. D. Thesis, UU 2012

Summary

- Strange hyperons probe the Strong Interaction in the confinement domain.
- Several open questions in baryon spectroscopy show that there is much more to learn on how quarks interact inside baryons.
- What happens if light quarks are replaced with heavier? Very little is known about the excited strange hyperon spectra.
- PANDA can fill a gap in the strange sector:
 - **Best** prospects for double- and triple strange hyperon spectroscopy.
 - **Only** possible experiment for spin observables in $\bar{p}p \rightarrow \bar{Y}Y$.

Summary and Outlook

- Production of strange and charmed hyperons probe QCD at two different energy scales.
- The role of spin in the strong interaction can be explored with hyperon spin observables.
- Polarisation parameters of $p\overline{p} \rightarrow \Omega\overline{\Omega}$ derived (talk by WIA)
- Simulation studies show excellent prospects for antihyperon-hyperon channels with PANDA.

Time-line, hyperon physics with PANDA

- PANDA physics from **Day One**:
 - Single- and double strange hyperon spectroscopy.
 - Spin observables of single- and double strange hyperons.
- First years of PANDA:
 - Triple strange hyperon spectroscopy.
 - Polarisation parameters of Ω^{-} .
- Long-term projects with high luminosity:
 - Single charm baryon spectroscopy.
 - Spin observables of $\Lambda^+_{\ c}$.
 - CP violation in Λ and Ξ decays.

Thanks to:

Albrecht Gillitzer, Stefan Leupold, Vasiliy Mocharov, Elisabetta Perotti, Sophie Grape, Tord Johansson and Erik Thomé.

Backup

₫,

Λ

Spin observables for spin $\frac{1}{2}$ hyperons

Method of Moments

The expectation value or the moment of a function g(x) can be written $\langle g(x) \rangle = \int_{\Omega} g(x) f(x \mid \theta) dx$

p where $f(x|\theta)$ is a probability density function.

Example: A hyperon with polarisation P_n decaying into $p \pi^2$. Then

$$f(\theta_p \mid P_n) = \frac{dN}{d\cos\theta_p} \propto 1 + \alpha_{\Lambda} P_n \cos\theta_p$$

and thus

$$\langle \cos \theta_p \rangle = \int \frac{dN}{d \cos \theta_p} \cos \theta_p d \cos \theta_p = \int (1 + \alpha_\Lambda P_n \cos \theta_p) \cos \theta_p d \cos \theta_p = \frac{\alpha_\Lambda P_n}{3}$$

which means that the polarisation can be expressed as $P_n = \frac{3}{\alpha_\Lambda} \langle \cos \theta_p \rangle$