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Preface

The European Young Statisticians Meetings are held every two years under
the auspices of the European Regional Committee of the Bernoulli Society. In
2017, between the 14th and 18th of August, the 20th EYSM was held Uppsala,
Sweden.

The idea of the meeting is to provide young researchers (less than thirty years
of age or two to eight years of research experience) with an introduction to
the international scene within the broad subject area, from pure probability
theory to applied statistics. Participation is by invitation and every participant
submits contribution and gives a talk. There are no parallel sessions.

Apart from the speakers included in these proceedings the meeting was guested
by five keynote speakers: Jimmy Olsson from the Royal Institute of Technology
in Stockholm, Jenny Wadsworth from Lancaster University, Jane Hillston from
the University of Edinburgh, Hannu Oja from University of Turku and Svante
Janson from Uppsala University.

We would like to express our gratitude to these speakers as well as to all
participants of the conference. Moreover we wish to thank to the Depart-
ment of Mathematics and the Department of Statistics at Uppsala University
for sponsoring the conference and the European Regional Committee of the
Bernoulli Society for entrusting us with organising the meeting.

September, 2017
Tilo Wiklund & Måns Thulin
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Delete or Merge Regressors algorithm

Agnieszka Prochenka ∗1 and Piotr Pokarowski1

1Faculty of Mathematics, Informatics and Mechanics, University of Warsaw

This paper addresses a problem of linear and logistic model selection in the
presence of both continuous and categorical predictors. In the literature two
types of algorithms dealing with this problem can be found. The first one
is the well known group lasso ([3]) which selects a subset of continuous
and a subset of categorical predictors. Hence, it either deletes or not an
entire factor. An improvement of the group lasso regularization is group
MCP (using Minimax Concave Penalty) described in [6]. It assumes a concave
penalty and therefore uses more difficult optimization algorithms. The second
type is CAS-ANOVA ([1]) which selects a subset of continuous predictors and
partitions of factors. Therefore, it merges levels within factors. Similar method
with different optimization method is called gvcm and is described in [5].

In the article an algorithm called DMR (Delete or Merge Regressors) is
described. Like CAS-ANOVA it selects a subset of continuous predictors and
partitions of factors. However, instead of using regularization, it is based on
a stepwise procedure, where in each step either one continuous variable is
deleted or two levels of a factor are merged. The order of accepting consecutive
hypotheses is based on sorting Wald statistics. Some of the preliminary results
for DMR are described in [2].

DMR algorithm works only for data sets where p < n (number of columns in
the model matrix is smaller than the number of observations). In the paper a
modification of DMR called DMRnet is introduced that works also for data sets
where p� n. DMRnet uses regularization in the screening step and DMR after
decreasing the model matrix to p < n.
Theoretical results prove that DMR for linear and logistic regression are

consistent model selection methods even when p tends to infinity with n.
Furthermore, upper bounds on the error of selection were calculated. However,
in this paper the focus is on description of the algorithm and real data example,
for which DMRnet chooses smaller models with not higher prediction error than
the competitive methods.

Keywords: factorial selection, logistic regression, linear regression, Wald
statistics, hierarchical clustering

∗Corresponding author: a.prochenka@phd.ipipan.waw.pl



DMR A. Prochenka and P. Pokarowski

1 Factorial selection

We consider n data points (y1,xT1·), (y2,xT2·), . . . , (yn,xTn·) with univariate
responses yi and p-dimensional covariates xTi· . Denote by y = (y1, y2, . . . , yn)T ,
xj = (x1j , x2j , . . . , xnj)T , X = (x1,x2, . . . ,xp) the n times p model matrix.
We assume that X is a full rank matrix.

Let yi be independent, such that yi ∼ fηi,σ2(·) and ηi = xTi·β for β ∈ Rp,
where fηi,σ2 is the density function of some distribution in the exponential
family. Let us denote η = (η1, η2, . . . , ηn)T and

η∗ = Xβ∗ = 1β∗
00 + X0β∗

0 + X1β∗
1 + . . .+ Xlβ

∗
l , (1)

where

1. X = [1,X0,X1, . . . ,Xl] is a model matrix organized as follows: X0
is a matrix corresponding to continuous regressors and X1, . . . ,Xl are
zero-one matrices encoding corresponding factors with the first level set
as the reference.

2. β∗ = [β∗
00,β

∗T
0 ,β∗T

1 , . . . ,β∗T
l ]T ∈ Rp is a parameter vector organized

as follows: β∗
00 is the intercept, β∗

0 = [β∗
10, . . . , β

∗
p00]T is a vector of

coefficients for continuous variables and β∗
k = [β∗

2k, . . . , β
∗
pkk

]T is a vector
of parameters corresponding to the k-th factor, k = 1, . . . , l, hence the
length of the parameter vector is p = 1 + p0 + (p1 − 1) + . . .+ (pl − 1).

Denote sets of indexes: N = {0, 1, . . . , l}, N0 = {0, 1, . . . , p0} and Nk =
{2, 3, . . . , pk} for k ∈ N \{0}. Let us define an elementary constraint for model
(1) as a linear constraint of one of two types:

Hjk : β∗
jk = 0 where j ∈ Nk \ {0}, k ∈ N, (2)

Hijk : β∗
ik = β∗

jk where i, j ∈ Nk, i 6= j, k ∈ N \ {0}. (3)

1.1 Feasible models

A feasible model can be defined as a sequence M = (P0, P1, ..., Pl), where
P0 denotes a subset of indexes of continuous variables and Pk is a particular
partition of levels of the k-th factor. Such a model can be encoded by a set
of elementary constraints. A set of all feasible models is denoted byM. Let
us denote a model F ∈M without constraints of types (2) or (3) as the full
model.
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Delete or Merge Regressors algorithm DMR

Example. For illustration, let us consider a linear predictor with one factor
and one continuous variable:

Xβ∗ = 1 · 1 + X0 · 2 + X1 ·



−2
−2
0




=




1
1
1
1
1
1
1
1




· 1 +




−0.96
−0.29
0.26
−1.15

0.2
0.03
0.09
1.12




· 2 +




0 0 0
0 0 0
1 0 0
1 0 0
0 1 0
0 1 0
0 0 1
0 0 1






−2
−2
0




Then β∗ = [1, 2,−2,−2, 0]T . The full model F = (P0 = {1}, P1 = {{1}, {2}, {3}, {4}})
with p0 = 1, p1 = 4, p = 5. The true model is (P0 = {1}, P1 = {{1, 4}, {2, 3}})
and is the same as the full model with two elementary constraints: β∗

41 = 0
and β∗

21 = β∗
31.

Our goal is to find the best feasible model according to Generalized Infor-
mation Criterion (GIC) or estimated prediction error using cross-validation,
taking into account that the number of feasible models grows faster than expo-
nentially with p. In order to significantly reduce the amount of computations,
we propose a greedy backward search.

2 DMR and DMRnet algorithms

DMR for generalized linear models is described in details in Algorithm 1. DMRnet
is a generalization of DMR to high-dimensional data where p � n by adding
screening step using group lasso. After reduction of the dimension of the
model to p < n, DMR algorithm is used. In order to make the screening step
more accurate and to better balance the impact of screening and the DMR
selection steps, the screening is done multiple times.

Example. Example 1.1 continued, DMR algorithm with GIC:

w2
110 = 9.35,D1 =




0 w2
121 w2

131 w2
141

w2
121 0 w2

231 w2
241

w2
131 w2

231 0 w2
341

w2
141 w2

241 w2
341 0


 =




0 8.01 4.52 0.20
8.01 0 0.15 3.09
4.52 0.15 0 2.91
0.20 3.09 2.91 0


 ,

cutting heights for agglomerative clustering illustrated in Figure 1:
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h = [0, 0.15, 0.20, 8.01, 9.35]T , A0 =

β00 β10 β21 β31 β41





0 0 −1 1 0
0 0 0 0 1
0 0 1 0 0
0 1 0 0 0

,

GIC = [28.33, 26.65, 25.36, 34.68, 39.59]T . The selected model according to
GIC is the third one (GIC = 25.36) with two elementary constraints: β∗

41 = 0
and β∗

21 = β∗
31, which is the true model.

Figure 1: Dendrogram for hierarchical clustering used in Example 1.1.
2 3 1 4

0
2

4
6

8

Dendrogram

hclust (*, "complete")

h

3 Real data example: Miete

The data set Miete comes from http://www.statistik.lmu.de/service/
datenarchiv. The data consists of n = 2053 households interviewed for the
Munich rent standard 2003. The response is monthly rent per square meter
in Euros, data is described in detail in [4]. 8 categorical and 2 continuous
variables give 36 and 3 (including the intercept) parameters. This gives p = 39.

In Figure 2 a plot of prediction error (PE) vs model dimension (MD)
calculated by 10-fold C-V for 100 λ values for CAS-ANOVA, gvcm, group MCP
and group lasso and from 1 to p for DMR and from 1 to min{p, n2 } for DMRnet
is shown. For every algorithm we can find a global minimum: for DMRnet and
DMR these are when MD = 12, for CAS-ANOVA when MD = 21.1, for gvcm when
MD = 25.2 and for group MCP and group lasso for the full model, MD=39.
If we chose models with the lowest prediction error, DMRnet would have both
the smallest error and the smallest number of parameters.

Acknowledgements: The research is supported by the Polish National Science
Center grant 2015/17/B/ST6/01878.
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Figure 2: PE vs MD calculated by 10-fold C-V for Miete data set.
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Algorithm 1: DMR (Delete or Merge Regressors for generalized linear models)
Input: y, X
1. Computation of Wald statistics

Calculate Wald statistics for all elementary constraints defined in (2):
for j ∈ Nk \ {0}, k ∈ N do

w2
1jk =

β̂2
jk

V̂ ar(β̂jk)

end for
Calculate Wald statistics for all elementary constraints defined in (3):

for i, j ∈ Nk, i 6= j, k ∈ N \ {0} do

w2
ijk = (β̂ik − β̂jk)2

V̂ ar(β̂ik − β̂jk)

end for
2. Agglomerative clustering for factors (using complete linkage clus-
tering)
For each factor perform agglomerative clustering using Dk = [dijk]ij as
dissimilarity matrix.
for k ∈ N \ {0} do

d1jk = dj1k = w1jk for j ∈ Nk,
dijk = wijk for i, j ∈ Nk, i 6= j,
diik = 0 for i ∈ Nk.

end for
Denote cutting heights obtained from the clusterings of l factors as

hT
1 ,hT

2 , . . . ,hT
l .

3. Sorting constraints (hypotheses) according to the likelihood ratio
test statistics
Combine vectors of cutting heights: h = [0,hT

0 ,hT
1 , . . . ,hT

l ]T , where h0 is a
vector of likelihood ratio test statistics for constraints concerning continuous
variables and 0 corresponds to the full model. Sort elements of h in increasing
order and construct a corresponding (p − 1) × p matrix A0 of consecutive
constraints.
4. Computation of log-likelihood for models on the nested path
for m = 0, . . . , p− 1 do

LMm = `(β̂Mm
), where Mm is the model with m first constraints from

A0 accepted.
end for
Output: M DMR = {M0, . . . ,Mp−1}, LDMR = (LM0 , . . . , LMp−1 )T .

12



Matrix Independent Component Analysis

Joni Virta∗1

1University of Turku, Finland

Independent component analysis (ICA) is a popular means of dimension
reduction for vector-valued random variables. In this short note we review
its extension to arbitrary tensor-valued random variables by considering the
special case of two dimensions where the tensors are simply matrices.

Keywords: FOBI, Kronecker structure, Kurtosis

1 Matrix independent component model

For an introduction to classical vector-valued independent component analysis
(ICA) the reader is referred to [3]. The tensorial ICA theory we next review
was first introduced in [6] and further investigated in [7].

Let X ∈ Rp1×p2 be a random matrix from the matrix location-scale model

X = µ + Ω1ZΩT
2 , (1)

where the location matrix µ ∈ Rp1×p2 and the non-singular mixing matrices
Ω1 ∈ Rp1×p1 and Ω2 ∈ Rp2×p2 are unknown parameters and Z ∈ Rp1×p2 is
an unobserved random matrix with finite joint fourth moments. Defining
vec : Rp1×p2 → Rp1p2 as the function that stacks the columns of its argument
into a vector, the model (1) can be written as

vec (X) = vec (µ) + (Ω2 ⊗Ω1) vec (Z) , (2)

where ⊗ is the Kronecker product. Thus (1) can also be thought as a structured
location-scale model (Kronecker model) for random vectors.

We will next describe conditions under which the model (1) is well-defined.
For any non-singular A1 ∈ Rp1×p1 and A2 ∈ Rp2×p2 it can be written as

X = µ +
(
Ω1A−1

1
) (

A1ZAT
2

) (
Ω2A−1

2
)T = µ + Ω∗

1Z∗ (Ω∗
2) T ,

showing that the parameters are not identifiable as such. Note that we can never
achieve full identifiability as for any non-zero scalar β the maps Ω1 7→ βΩ1 and

∗Corresponding author: joni.virta@utu.fi



J. Virta

Ω2 7→ β−1Ω2 preserve the model. In the following we will refer to identifiability
up to this proportionality as proportional identifiability. As a first step towards
proportional identifiability we set the following constraints for Z.

E [vec (Z)] = 0p1p2 and Cov [vec (Z)] = Ip1p2 .

The first constraint fixes the location matrix µ and the second makes both Ω1
and Ω2 proportionally identifiable up to orthogonal A1 and A2.

To impose more structure the model can be equipped with additional as-
sumptions on the latent matrix Z. The classical choice is to assume that
vec(Z) ∼ N (0p1p2 , Ip1p2), resulting in a general matrix normal distribution for
X. The normal model can further be generalized in two directions. Focusing
on the orthogonal invariance of the standard normal distribution leads us to
consider the class of spherical random matrices satisfying Z ∼ U1ZUT

2 for
all orthogonal U1 ∈ Rp1×p1 ,U2 ∈ Rp2×p2 and this in turn yields a matrix
elliptical distribution for X, see [4] for the previous two models.

The second generalization is based on another key characteristic of the
standard multivariate normal distribution, the equivalence of uncorrelatedness
and independence, and equips Z with the following assumption.

A1. The components of Z are mutually independent.

While assumption A1 is rather strong, actually strong enough to guarantee the
proportional identifiability of Z in (1) up to some trivialities when paired with
A2 below, it is still a natural choice in applications where the components of
Z can each be thought to model one separate aspect of the phenomenon which
then combine independently to produce the observation X.

The Skitovich-Darmois theorem [5] states that if a set of independent random
variables can be combined to yield non-trivial linear combinations that are
itself independent they must all be normally distributed. Thus we must further
restrict the presence of multivariate normal distribution in the latent matrix
to avoid A1ZAT

2 having independent components for non-trivial A1 and A2.

A2. At most one row of Z has a multivariate normal distribution and at most
one column of Z has a multivariate normal distribution.

Assumptions A1 and A2 now jointly guarantee that Ω1 and Ω2 are proportion-
ally identifiable up to A1 and A2 containing a single ±1 in each of their rows
and columns. Consequently the matrix Z can be estimated up to the order
and signs of its rows and columns, a defect that is usually of no consequence
in practice.

Definition 1. We say that X ∈ Rp1×p2 obeys the matrix independent compo-
nent model (MICM) if it satisfies (1) along with assumptions A1 and A2.

14



Matrix Independent Component Analysis

To wrap everything up, in matrix independent component analysis we assume
that X1, . . . ,Xn is a random sample from the distribution of X obeying MICM
and our objective is the estimation of the matrices Z1, . . . ,Zn.

2 The estimation of Z

Let X obey MICM. Centering the random matrix as X 7→ X−E [X] shows that
without loss of generality we may assume in the following that vec(µ) = 0p1p2 .

A key notion in the model is that, instead of treating the elements of Z
separately, we consider them in an aggregate sort of way via their corresponding
rows and columns. As an example take assumptions A1 and A2, the first of
which can be written equivalently as “the rows of Z are mutually independent
and the columns of Z are mutually independent”. The same thought is also
reflected in our definitions of the row and column covariance matrices,

Σ1 (X) = 1
p2
E
[
XXT

]
and Σ2 (X) = 1

p1
E
[
XT X

]
.

The matrices Σ1 (X) and Σ2 (X) can be interpreted as the average covari-
ance matrices of the p2 columns and p1 rows of X, respectively. Under the
independent component model they further enjoy the “equivariance property”
described by the next lemma.

Lemma 1. Let X obey MICM. Then the inverse square roots of the row and
column covariance matrix satisfy

Σ1 (X)−1/2 = p
1/2
2

‖Ω2‖F
U1Ω−1

1 and Σ2 (X)−1/2 = p
1/2
1

‖Ω1‖F
U2Ω−1

2 ,

for some orthogonal matrices U1 ∈ Rp1×p1 and U2 ∈ Rp2×p2 , where ‖ · ‖F is
the Frobenius (Euclidean) norm.

For the proof of Lemma 1 and all other results in this review see [6]. Lemma
1 immediately yields the first step towards the estimation of Z:

Lemma 2. Let X obey MICM. Then we have
(
Σ1 (X)−1/2

)
X
(
Σ2 (X)−1/2

)
T = γU1ZUT

2 ,

with orthogonal U1 ∈ Rp1×p1 and U2 ∈ Rp2×p2 and γ = (p1p2)1/2‖Ω2⊗Ω1‖−1
F .

According to Lemma 2 the two-sided standardization of X reduces the
problem of estimating Ω1 and Ω2 to the easier task of estimating two orthogonal

15
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matrices. In the following we denote by Xst the standardized matrix on the
left-hand side of Lemma 2.

Our method for estimating U1 and U2 is based on an extension of a mul-
tivariate ICA method called fourth order blind identification (FOBI) [1] and
will hereafter be referred to as MFOBI. Heuristically ICA can be thought of
as the maximization of non-normality and FOBI achieves it via considering a
matrix measuring kurtosis, a classical indicator of non-normality. Sure enough,
we define both row and column versions of the matrix.

B1 (X) = 1
p2
E
[
XXT XXT

]
and B2 (X) = 1

p1
E
[
XT XXT X

]
.

A key property of B1 (X) and B2 (X) with respect to our problem, diagonality
under independence, is described in the next lemma.

Lemma 3. Let the random matrix Z ∈ Rp1×p2 have mutually independent
components with zero means, unit variances and finite joint fourth moments.
Then we have

B1(Z) = (p1 + p2 + 1) Ip1 + diag(κ1•, . . . , κp1•)
B2(Z) = (p1 + p2 + 1) Ip2 + diag(κ•1, . . . , κ•p2),

where κi• is the ith row mean and κ•j is the jth column mean of the kurtosis
matrix κ =

(
E
[
z4

ij − 3
])

ij
.

Both matrices B1 (X) and B2 (X) are orthogonally equivariant and we
obtain the following.

Lemma 4. Let X obey MICM. Then we have

B1(Xst) = γ4U1B1(Z)UT
1 and B2(Xst) = γ4U2B2(Z)UT

2 ,

where B1(Z) and B2(Z) are diagonal by Lemma 3.

The two equations in Lemma 4 are the eigendecompositions of B1(Xst)
and B2(Xst) and to guarantee the consistent estimation of U1 and U2, the
corresponding eigenspectra must be distinct. In the light of Lemma 3 this
requirement takes the following form.

A3. The row means of κ are distinct and the column means of κ are distinct,
where κ =

(
E
[
z4

ij − 3
])

ij
is the kurtosis matrix of the latent Z.

Assumption A3 is a stronger version of assumption A2 and in particular says
that no two rows or columns of Z may consist solely of random variables with
identical distributions. Our main result is then the following.
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Theorem 1. Let X obey MICM and satisfy assumption A3. Further let
V1 ∈ Rp1×p1 and V2 ∈ Rp2×p2 contain the eigenvectors of B1(Xst) and
B2(Xst), respectively, as their columns. Then we have

VT
1 XstV2 = γZ ∝ Z.

The MFOBI solution of Theorem 1 enables the estimation of Z up to the
scaling factor γ which is usually satisfactory enough, the shape and other
higher-order properties of the components being of greater interest than their
scales. In practice the MFOBI solution is obtained by replacing the expected
values by the corresponding sample estimates. After the estimation of Z a
further problem is the choosing of the most “interesting” components among
the p1p2 elements of Z. Our kurtosis-based approach immediately leads to
consider the components with extremal kurtosis, or to stay more in line with
the spirit of the method, the rows and columns with the highest and lowest
mean kurtoses. However, as the classical kurtosis is a very non-robust statistic
the choice of a suitable criterion is still an open question.

3 Discussion

The näıve approach to model (1) is to vectorize it, resulting into (2), and
proceed with standard methods of vector-valued ICA. However, this completely
ignores the Kronecker structure of the mixing matrix Ω2 ⊗Ω1 and the price
we pay for our negligence further comes in the form of stronger assumptions
and increased computational cost. As an example, consider applying MFOBI
to (1) versus applying FOBI to (2). Assumption A1 takes the same form for
both methods but the counterpart of assumption A2 for FOBI is much more
strict. Namely, it requires that at most one element of vec(Z) has a normal
distribution while in MFOBI the majority of the elements of Z can be normal
if conveniently located. Similarly our assumption A3 and its vector-valued
analogy, stating that the kurtoses of the elements of vec(Z) are distinct, share
the same relationship.

In order to compare the computational costs of the two methods we focus
for simplicity only on the computationally most intensive part of the algo-
rithms, the eigendecompositions. For X ∈ Rp1×p2 FOBI has to perform two
eigendecompositions of a p1p2 × p1p2 matrix while MFOBI requires the eigen-
decompositions of two p1 × p1 and two p2 × p2 matrices. In essence MFOBI
“divides” the computational load into a larger number of smaller operations,
lessening the overall complexity.

In [7] an extension of a second classical ICA method, joint approximate
diagonalization of eigen-matrices (JADE) [2] for tensor-valued data was intro-
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duced. Called TJADE, the method shares the standardization step of MFOBI
(or more accurately, of TFOBI, its general tensor-valued extension) but ap-
proaches the estimation of the orthogonal matrices differently. In TJADE,
instead of diagonalizing a single kurtosis matrix, we diagonalize several of them
at once, essentially using more information in the estimation (and consequently
increasing the computational burden as well). The implementations of both
methods along with several other tensor extensions of classical methods can
be found in the R-package tensorBSS [8].

Interestingly, restricting to matrix-valued observations only in this review
serves more than just instructional purposes. In [6], [7] it is shown that the
general tensor versions of the methods can be reduced to the matrix case.
Similarly it can be shown that for the limiting distributions of the corresponding
estimators it is sufficient to consider only the matrix case.

This note has been left devoid of examples and applications of the discussed
methodology and instead several can be found, for example, in [6, 7].
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Nonparametric estimation of gradual change
points in the jump behaviour of an Itō

semimartingale

Michael Hoffmann∗1

1Ruhr-Universität Bochum

In applications the properties of a stochastic feature often change gradually
rather than abruptly, that is: after a constant phase for some time they slowly
start to vary. In this paper we discuss the localisation of a gradual change
point in the jump characteristic of a discretely observed Itō semimartingale.
We propose a new measure of time variation for the jump behaviour of the
process. Based on weak convergence of a suitable stochastic process we derive
an estimator for the first point in time where the jump characteristic changes.

Keywords: Lévy measure, jump compensator, empirical processes, weak
convergence, gradual changes

1 Introduction

Stochastic processes in continuous time are widely used in science nowadays, as
they allow for a flexible modeling of the evolution of various real-life phenomena
over time. Speaking of mathematical finance, of particular interest is the family
of semimartingales, which is theoretically appealing as it satisfies a certain
condition on the absence of arbitrage in financial markets and yet is rich enough
to reproduce stylized facts from empirical finance such as volatility clustering,
leverage effects or jumps. For this reason, the development of statistical tools
modeled by discretely observed Itō semimartingales has been a major topic
over the last years, both regarding the estimation of crucial quantities used
for model calibration purposes and with a view on tests to check whether a
certain model fits the data well. For a detailed overview of the state of the art
we refer to the recent monographs by [4] and [1].

In the following, we are interested in the evolution of the jump behaviour over
time in a completely non-parametric setting where we assume only structural
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conditions on the characteristic triplet of the underlying Itō semimartingale.
To be precise, let X = (Xt)t≥0 be an Itō semimartingale with a decomposition

Xt = X0 +
∫ t

0
bs ds+

∫ t

0
σs dWs +

∫ t

0

∫

R
z1{|z|≤1}(µ− µ̄)(ds, dz)

+
∫ t

0

∫

R
z1{|z|>1}µ(ds, dz), (1.1)

where W is a standard Brownian motion, µ is a Poisson random measure on
R+ × R, and the predictable compensator µ̄ satisfies µ̄(ds, dz) = ds νs(dz).
The main quantity of interest is the kernel νs which controls the number
and the size of the jumps around time s. In [2] the authors are interested
in the detection of abrupt changes in the jump measure of X. Based on
high-frequency observations Xi∆n

, i = 0, . . . , n, with ∆n → 0 they construct a
test for a constant ν against the alternative

ν(n)
s = 1{s<bnθ0c∆n}ν1 + 1{s≥bnθ0c∆n}ν2.

In the sequel, we will deal with gradual (smooth, continuous) changes of νs
which basically means that νs is a non-constant function in s ∈ R+. We discuss
how and how well the first point in time where the jump behaviour changes
(gradually) can be estimated. To this end, we introduce the formal setup in
Section 2 where we also define a measure of time variation which is used to
detect changes in the jump characteristic. Section 3 is concerned with weak
convergence of a standardized version of an estimator for this measure. In
Section 4 we use this result to derive an estimator of the first change point for
the jump behaviour. The proofs of the results presented in this paper can be
found in [3].

2 The basic assumptions and a measure of gradual
changes

In the sequel let X(n) = (X(n)
t )t≥0 be an Itō semimartingale of the form (1.1)

with characteristic triplet (b(n)
s , σ(n)

s , ν(n)
s ) for each n ∈ N. We are interested in

investigating gradual changes in the evolution of the jump behaviour and we
assume throughout this paper that there is a driving law behind this evolution
which is common for all n ∈ N. Formally, we introduce a transition kernel
g(y, dz) from ([0, 1],B([0, 1])) into (R,B) such that

ν(n)
s (dz) = g

( s

n∆n
, dz
)
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for s ∈ [0, n∆n]. This transition kernel shall be an element of the set G to be
defined below. Throughout the paper B(A) denotes the trace σ-algebra on a
set A ⊂ R with respect to the Borel σ-algebra B of R.

Assumption 1. Let G denote the set of all transition kernels g(·, dz) from
([0, 1],B([0, 1])) into (R,B) such that

(1) For each y ∈ [0, 1] the measure g(y, dz) does not charge {0}, i.e. g(y, {0}) = 0.
(2) The function y 7→

∫
(1 ∧ z2)g(y, dz) is bounded on the interval [0, 1].

(3) If

I(z) :=
{

[z,∞), for z > 0
(−∞, z], for z < 0

denotes one-sided intervals and

g(y, z) := g(y, I(z)) =
∫

I(z)
g(y, dx); (y, z) ∈ [0, 1]× R \ {0},

then for every z ∈ R \ {0} there exists a finite set M (z) = {t(z)1 , . . . , t
(z)
nz | nz ∈

N} ⊂ [0, 1], such that the function y 7→ g(y, z) is continuous on [0, 1] \M (z).
(4) For each y ∈ [0, 1] the measure g(y, dz) is absolutely continuous with respect to

the Lebesgue measure with density z 7→ h(y, z), where the measurable function
h : ([0, 1]×R,B([0, 1])⊗ B)→ (R,B) is continuously differentiable with respect
to z ∈ R \ {0} for fixed y ∈ [0, 1]. The function h(y, z) and its derivative will
be denoted by hy(z) and h′y(z), respectively. Furthermore, we assume for each
ε > 0 that

sup
y∈[0,1]

sup
z∈Mε

(
hy(z) + |h′y(z)|

)
<∞,

where Mε = (−∞,−ε] ∪ [ε,∞).

In order to investigate gradual changes in the jump behaviour of the under-
lying process we follow [5] and consider a measure of time variation for the
jump behaviour which is defined by

D(ζ, θ, z) :=
ζ∫

0

g(y, z)dy − ζ

θ

θ∫

0

g(y, z)dy, (2.1)

where (ζ, θ, z) ∈ C × R \ {0} and

C := {(ζ, θ) ∈ [0, 1]2 | ζ ≤ θ}. (2.2)
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Here and throughout this paper we use the convention 0
0 := 1. The time

varying measure defined in (2.1) is indeed suitable for the detection of gradual
changes in the jump characteristic of the underlying process, because one can
show that the jump behaviour corresponding to the first bnθc observations is
identical for some θ ∈ [0, 1] if and only if D(ζ, θ, z) ≡ 0 for all 0 ≤ ζ ≤ θ and
z ∈ R \ {0} (see [3]).

We conclude this section with the main assumption for the characteristics
of an Itō semimartingale which will be used throughout this paper.

Assumption 2. For each n ∈ N let X(n) denote an Itō semimartingale of the
form (1.1) with characteristics (b(n)

s , σ
(n)
s , ν

(n)
s ) defined on the probability space

(Ω,F ,P) that satisfies

(a) There exists a g ∈ G such that

ν(n)
s (dz) = g

( s

n∆n
, dz
)

holds for all s ∈ [0, n∆n] and all n ∈ N.

(b) The drift b(n)
s and the volatility σ(n)

s are predictable processes and satisfy

sup
n∈N

sup
s∈R+

(
E|b(n)

s |α ∨ E|σ(n)
s |p

)
<∞,

for some p > 2, with α = 3p/(p+ 4).

(c) The observation scheme {X(n)
i∆n
| i = 0, . . . , n} satisfies

∆n → 0, n∆n →∞, and n∆1+τ
n → 0,

for τ = (p− 2)/(p+ 1) ∈ (0, 1).

3 An estimator for the measure of time variation and
weak convergence

In order to estimate the measure of time variation introduced in (2.1) we use
the sequential empirical tail integral process defined by

Un(θ, z) = 1
n∆n

bnθc∑

j=1
1{∆n

j
X(n)∈I(z)},
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where ∆n
jX

(n) = X
(n)
j∆n
−X(n)

(j−1)∆n
, θ ∈ [0, 1] and z ∈ R \ {0}. An estimate

for the measure of time variation defined in (2.1) is then given by

Dn(ζ, θ, z) := Un(ζ, z)− ζ

θ
Un(θ, z), (ζ, θ, z) ∈ C × R \ {0}, (3.1)

where the set C is defined in (2.2). The following theorem establishes consis-
tency of Dn as it shows weak convergence of the process

Hn(ζ, θ, z) :=
√
n∆n(Dn(ζ, θ, z)−D(ζ, θ, z)). (3.2)

with values in `∞(Bε), where Bε = C ×Mε.

Theorem 1. If Assumption 2 is satisfied, then the process Hn defined in (3.2)
satisfies Hn  H in `∞(Bε) for any ε > 0, where H is a tight mean zero
Gaussian process with covariance function

Cov(H(ζ1, θ1, z1),H(ζ2, θ2, z2)) =

=
ζ1∧ζ2∫

0

g(y, I(z1) ∩ I(z2))dy − ζ1
θ1

ζ2∧θ1∫

0

g(y, I(z1) ∩ I(z2))dy

− ζ2
θ2

ζ1∧θ2∫

0

g(y, I(z1) ∩ I(z2))dy + ζ1ζ2
θ1θ2

θ1∧θ2∫

0

g(y, I(z1) ∩ I(z2))dy.

4 A consistent estimator for the gradual change point

If one defines
D(ε)(θ) := sup

|z|≥ε
sup

0≤ζ≤θ′≤θ
|D(ζ, θ′, z)|,

for some pre-specified constant ε > 0, one can characterize the existence of a
change point as follows: There exists a gradual change in the behaviour of the
jumps larger than ε of the process (1.1) if and only if D(ε)(1) > 0. Our aim is
to construct an estimator for the first point where the jump behaviour changes
(gradually). For this purpose we define

θ
(ε)
0 := inf

{
θ ∈ [0, 1] | D(ε)(θ) > 0

}
,

where we set inf ∅ := 1. We call θ(ε)
0 the change point of the jumps larger than

ε of the underlying process (1.1). Intuitively, the estimation of θ(ε)
0 becomes

more difficult the flatter the curve θ 7→ D(ε)(θ) is at θ(ε)
0 . Therefore, we describe
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the curvature of θ 7→ D(ε)(θ) by a local polynomial behaviour of the function
D(ε)(θ) for values θ > θ(ε)

0 . More precisely, we assume throughout this section
that θ(ε)

0 < 1 and that there exist constants λ, η,$, c(ε) > 0 such that D(ε)

admits an expansion of the form

D(ε)(θ) = c(ε)
(
θ − θ(ε)

0
)$ + ℵ(θ) (4.1)

for all θ ∈ [θ(ε)
0 , θ(ε)

0 + λ], where the remainder term satisfies |ℵ(θ)| ≤ K
(
θ −

θ(ε)
0
)$+η for some K > 0. By Theorem 1 the process Dn(ζ, θ, z) from (3.1) is

a consistent estimator of D(ζ, θ, z). Therefore we set

D(ε)
n (θ) := sup

|z|≥ε
sup

0≤ζ≤θ′≤θ
|Dn(ζ, θ′, z)|.

The construction of an estimator for θ(ε)
0 utilizes the fact that (n∆n)1/2D(ε)

n (θ)→
∞ in probability for any θ ∈ (θ(ε)

0 , 1]. Moreover, for θ ∈ [0, θ(ε)
0 ] we have

(n∆n)1/2D(ε)
n (θ) = OP(1) since this quantity converges weakly. Therefore, we

consider the statistic

r(ε)
n (θ) := 1{(n∆n)1/2D(ε)

n (θ)≤κn},

for a deterministic sequence κn →∞. From the previous discussion we expect

r(ε)
n (θ)→

{
1, if θ ≤ θ(ε)

0
0, if θ > θ

(ε)
0

in probability if the threshold level κn is chosen appropriately. Consequently,
we define the estimator for the change point by

θ̂(ε)
n = θ̂(ε)

n (κn) :=
1∫

0

r(ε)
n (θ)dθ.

The following result establishes consistency of the estimator θ̂(ε)
n under rather

mild assumptions on the sequence (κn)n∈N.

Theorem 2. If Assumption 2 is satisfied, θ(ε)
0 < 1, and (4.1) holds for some

$ > 0, then
θ̂(ε)
n − θ(ε)

0 = OP
(( κn√

n∆n

)1/$)
,

for any sequence κn →∞ with κn/
√
n∆n → 0.
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Theorem 2 makes the heuristic argument above more precise. A lower degree
of smoothness in θ(ε)

0 yields a better rate of convergence of the estimator.
Moreover, the slower the threshold level κn converges to infinity the better
the rate of convergence. In [3] the authors discuss a data-driven choice of the
threshold κn for which the probability for over- and underestimation of θ(ε)

0
can be controlled.
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Biomonitoring of waterbodies is vital as the number of anthropogenic stressors
on aquatic ecosystems keeps growing. However, the continuous decrease in
funding makes it impossible to meet monitoring goals or sustain traditional
manual sample processing. In this paper, we review what kind of statistical
tools can be used to enhance the cost efficiency of biomonitoring: We explore
automated identification of freshwater macroinvertebrates which are used as
one indicator group in biomonitoring of aquatic ecosystems. We present the
first classification results of a new imaging system producing multiple images
per specimen. Moreover, these results are compared with the results of human
experts. On a data set of 29 taxonomical groups, automated classification
produces a higher average accuracy than human experts.

Keywords: Biomonitoring, classification, image analysis, macroinvertebrates.

1 Introduction

Benthic macroinvertebrates are a diverse group of species that quickly react to
changes in their environment [15]. Their community composition can reflect
even subtle human-induced changes in their environment, making them an ideal
indicator group for aquatic biomonitoring [7]. In many countries, biomonitoring
of benthic macroinvertebrates is a key part of ecological status assessment of
surface waters required by the European Union’s Water Framework Directive
[17].

The traditional process of macroinvertebrate biomonitoring is the following:
First, macroinvertebrates are sampled, usually by using a kick-net method.
Second, the specimens are sorted out from the detritus and identified manually
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by an expert. Third, the observed taxa abundancies are used to calculate
biological indices indicating changes compared to previous sampling or a
reference community. Finally, the index values are combined to evaluate the
ecological status of the sampled waterbody.

In macroinvertebrate biomonitoring a large proportion of the total cost
and time is spent on manual identification by highly trained experts. It
takes several years to train an expert and manually identifying a sample
of few thousand individuals can take hours. The monitoring process could
be expedited substantially by shifting to automated identification and in
recent years there have been many studies on the automated identification of
benthic macroinvertebrates [10, 8, 6, 2, 1]. Many biologists tend to oppose the
shift to automated identification of macroinvertebrates due to fear of it not
being accurate enough. However, manual identification has been found to be
surprisingly error prone as well [4]. While there exist studies on the automated
classification of macroinvertebrates, to our knowledge, none of them include a
comparison between manual and automated identification accuracy.

In this article we introduce a new imaging system producing multiple images
per specimen and present classification results on the new multiple image data
base. We also compare the accuracy of automated classification to that of
human experts.

2 Automated classification

There has been increasing interest in automated classification of benthic
macroinvertebrates as continuing budget cuts disable the use of manual identi-
fication. In order to use automated classification, the specimens need to be
imaged onto a computer and the classification methods need to be trained with
data first keyed traditionally by several taxonomic experts. In our analyses,
we have used both single image data and multiple image data.

2.1 Single image data

In the first phase of the study, the specimens were scanned onto a computer in
single taxon batches using VueScan(c) software (http://www.hamrick.com/,
Phoenix, Arizona, USA) with an HP Scanjet4850 flatbed scanner at an optical
resolution of 2400 d.p.i. The scanned images were normalized to the same
intensity range and color balance by using a calibration target. Individual
specimens were segmented from the batch image, and each specimen was saved
as a single posture image. A set of 64 simple geometry and intensity-based
features were extracted for each specimen from the single posture images using
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ImageJ [14]. A large data set of 35 taxonomical groups and 6418 specimens
was imaged by the Finnish Environment Institute.

There exists a vast amount of different algorithms and models for classifica-
tion. For the single image data, we compared a group of classification methods
and presented a novel Bayesian classifier, RBA, that achieved classification
accuracy of 81.2 % [2]. In another work, we used the image data with few
modifications: With one taxon excluded from the study and four taxa com-
bined into two, the data comprised of 32 taxonomic classes [1]. In addition to
previously explored classifiers, a kernel extension of Extreme Learning Machine
[5] was employed and it achieved the highest classification accuracy of 84.1 %.

2.2 Multiple image data

In the second phase of the study, a new imaging system was built to enable
multiple images per specimen. The system is described in Figure 1a. It consists
of two Basler ACA1920-155UC cameras (frame rate of 150 fps) with Megapixel
Macro Lens (f=75mm, F:3.5-CWD<535mm) and a high power LED light.
The cameras are placed at a 90 degree angle to each other to ensure multiple
postures of each specimen. The software builds a model of the background
and sets off the cameras when a significant change in the view of the camera is
detected. A specimen is dropped into a cuvette filled with alcohol. As it sinks,
both cameras take multiple shots of it and the resulting images are stored onto
a computer (See example images in Figure 1b). The number of images per
specimen depends on the size and weight of each specimen: Heavier specimen
sink to the bottom of the cuvette faster, leading to a smaller number of images.

Using the described imaging device, the Finnish Environment Institute
compiled an image data base of 126 lotic freshwater macroinvertebrate taxa
and over 2.6 million images. For the current work, we restricted the number
of classes to 29 taxa present at a human proficiency test to compare the
classification results with human experts. We also restricted the number of
images per specimen to a maximum of 50 images for computational reasons.
If a specimen had more images from both cameras combined, we randomly
selected 50 of them. The final data comprises of 7742 observations and a total
of 367341 images. Using ImageJ, the same set of 64 features was extracted
from the images as for the phase one data.

With the 64 features, extracted from the multiple image data, we explored
automated classification using MLP, RF and SVM. We split the observations
randomly into training (70 %), validation (10 %) and test (20 %) data 10
times. With each data split, we used the training data to build the model and
the validation data to select optimal parameter values. Once the parameters
were fixed, the training and validation data were combined to train the model
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(a) (b)

Figure 1: (a): Schematic of the imaging system for macroinvertebrates pictured
from above. (b): Example images of a Polycentropus flavomaculatus
specimen from two cameras. The top row images are from camera 1
and the bottom row images from camera 2.

again. Each image of the test data was classified and the final class for each
observation was based on majority vote among all the images of the specimen.
All the models were built using R [13]. The results are shown in Table 1.

The highest classification accuracy is achieved with SVM. Protonemura sp.,
Hydropsyche saxonica, Diura sp. and Capnopsis schilleri have high error rates
due to a low number of observations in the training data. The hardest taxa
to identify with adequate amount of training data are Baetis vernus group
which is usually confused with Baetis rhodani, and Kageronia fuscogrisea and
Polycentropus irroratus that are confused with several other taxa.

Table 1: Classification accuracy for multiple image data of 29 taxonomic classes.
The means and standard deviations are computed over ten splits into
training (80 %) and test (20 %) data.

Classifier acc sd(acc)
RF 0.713 0.012
MLP 0.770 0.011
SVM 0.865 0.006
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The classification results presented in Table 1 were obtained with very simple
features and higher classification accuracy could be obtained using more refined
features. In fact, even a simple principal component transformation that makes
the features uncorrelated already slightly improves the classification accuracy
for SVM (acc = 87.4%, sd(acc) = 0.005) and MLP (acc = 79.7%, sd(acc) =
0.011). With a convolutional neural network [CNN, 9] that uses the original
images as input instead of features, the classification accuracy is even higher.
We applied the MatConvNet [16] implementation of the Alexnet model with
batch size 256 and 60 training epochs in Matlab [11] and achieved an average
classification accuracy of 93.4 % (sd(acc) = 0.006).

Figure 2: Classification accuracy of SVM plotted against the maximum number
of images per specimen.

We also studied, how the maximum number of images per observation affects
the classification accuracy with SVM. From Figure 2, it is clear that accuracy
increases with the number of images per specimen. However, the difference in
accuracy between a maximum of 30, 50 or 100 images is quite small while the
difference in computational costs is much greater. It is crucial to consider both
when deciding on the number of images to use per specimen. The classification
accuracy achieved for the multiple image data presented here is not directly
comparable with the results for the single image data of Section 2.1 as the data
sets have only 14 taxa in common. However, from Figure 2 it is evident that
having more than one image per specimen clearly improves the classification
accuracy.

3 Manual classification

In order to compare automated and manual classification, we need classification
results on the same set of taxa for both. The Finnish Environment institute
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organized a proficiency test on taxonomic identification of boreal freshwater
lotic, lentic, profundal and North-Eastern Baltic benthic macroinvertebrates in
March 2016. The aim of the test was to assess the reliability of professional and
semi-professional identification of macroinvertebrate taxa routinely encountered
during North-Eastern Baltic coastal or boreal lake and river monitoring [12]. A
part of the proficiency test included 10 experts each identifying 50 specimens of
lotic freshwater macroinvertebrates belonging to a total of 46 taxonomic groups,
of which 29 are in common with the multiple image data introduced in Section
2.2. The average accuracy for the 46 taxa data was 93.2 % (sd = 0.061) and
for the 29 taxa in common with the image data, the average accuracy was 92.7
% (sd = 0.064). The hardest taxon to be identified was Hydropsyche saxonica
as half of the specimen were confused with Hydropsyche angustipennis.

4 Discussion

The mismatch between funding and biomonitoring goals calls for more efficient
monitoring processes. One way to lower the cost of macroinvertebrate biomon-
itoring is to shift from manual to automated identification of samples. The
material costs of the imaging system described in Section 2.2 are approximately
4-5K e, while the price of a high quality stereo microscope traditionally used
for macroinvertebrate identification is twice as much. The imaging system
is more affordable and it fits well into the work flow of sample processing.
Whether using manual or automated identification, the sampled specimens
need to be sorted from the detritus. As a natural extension of this, the operator
can drop a specimen into the cuvette of the imaging system before placing it
into a vial for storing.

Automated classification can enhance the cost-effeciency of the macroin-
vertebrate sample processing also due to its speed. Training a human expert
takes years while – depending on the choice of a classifier and the size of the
training data – training a classification model can take 1–5 hours. Predicting
taxonomic groups for a sample of 1600 specimens only takes a few minutes of
computing compared to the 1–12 hours of manual labor. Also, once a classifier
is trained, using it does not require expertise.

Of course, the viability of shifting to automated classification depends on
the classification accuracy above all. In this paper, we presented classification
results on an image data comprising 29 taxa also present at a human expert
proficiency test. The achieved classification accuracy (87.4 % for SVM and
93.4 % for CNN) is in the range of human accuracy of the proficiency test
(82.4 − 100%) with the same taxa. The proficiency test included one or two
specimen per taxon for each participant while the image test data for automated
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classification comprised a total 1557 observations. When using the exact same
amount of observations per taxon for testing as in the proficiency test, the
classification accuracy for automated classifiers decreases but this is due to the
fact that the image data is not a balanced data set and some of the 29 taxa
have very few observations for training.

In order to adopt the automated identification process in practice, we
need to achieve similarly high classification accuracy with a larger number
of taxonomic groups. In this paper, we restricted the taxa to 29 in order to
provide a comparison to human experts. Typically, 30–75 macroinvertebrate
taxa are encountered at individual sites. While there is need for extending the
classifiers to more taxa, the results so far are very promising.
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[2] J. Ärje, S. Kärkkäinen, T. Turpeinen, and K. Meissner. Breaking the
curse of dimensionality in quadratic discriminant analysis models with a
novel variant of a bayes classifier enhances automated taxa identification
of freshwater macroinvertebrates. Environmetrics, 24(4):248–259, 2013.

[3] P. Haase, S. U. Pauls, K. Schindehütte, and A. Sunderman. First audit
of macroinvertebrate samples from an EU Water Framework Directive
monitoring program: human error greatly lowers precision of assessment
results. Journal of the North American Benthological Society, 29(4):1279–
1291, 2010.

[4] A. Iosifidis, A. Tefas, and I. Pitas. Graph embedded extreme learn-
ing machine. IEEE Transactions on Cybernetics, 2015. D.O.I.
10.1109/TCYB.2015.2401973.

[5] H. Joutsijoki, K. Meissner, M. Gabbouj, S. Kiranyaz, J. Raitoharju, J. Ärje,
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J. Ärje, V. Tirronen, J. Raitoharju, K. Meissner, S. Kärkkäinen
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Post-selection inference has been considered a crucial topic in data analysis. In
this article, we develop a new method to obtain correct inference after model
selection by the Akaike’s information criterion [1] in linear regression models.
Confidence intervals can be calculated by incorporating the randomness of
the model selection in the distribution of the parameter estimators which act
as pivotal quantities. Simulation results show the accuracy of the proposed
method.

Keywords: Post-selection inference; Confidence intervals; Akaike informa-
tion criterion.

1 Introduction

Consider the linear regression setting where the true model is of the form

YYY = µµµ + ϵϵϵ (1)

where µµµ ∈ Rn and ϵϵϵ ∼ N(000, σ2IIIn) and we assume that σ2 is known. For a
given predictor matrix XXX = (xxx1, . . . ,xxxp) ∈ Rn×p, we wish to model µµµ by a
linear function of all predictors, XbXbXb, or just a subset of predictors, XXXMbbbM ,
where XXXM contains as columnsthe predictors with indices in M ⊆ {1, . . . , p}.
This setting can be considered as a nonparametric setting because there is
no assumption about whether the true model is also linear for a true coeffi-
cients vector βββ0. The least squares estimator in linear regression is defined
as β̂ββM = (XXXt

MXXXM )−1XXXt
MYYY which minimizes the expected squared error. In

other words, β̂ββM is the estimator of βββM = (XXXt
MXXXM )−1XXXt

Mµµµ.
Regarding the inference, one can easily use classical confidence intervals (in

any submodel) based on the normality of the observations. The difficulty arises
when one selects a model based on a criterion from a collection of potential

∗Corresponding author: ali.charkhi@kuleuven.be
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models M and wants to do inference for the parameters in the selected model.
Since this selection is data-driven, it is random. Ignoring this randomness may
lead to incorrect inference. One way to incorporate the selection randomness
in inference is using conditional inference, by conditioning on the selected
model.

When one imposes the assumption that there exist a true model with pa-
rameters βββ0, [7, 8] showed that the distribution of a post-selection estimator
can not be estimated in a uniform way. Considering model (1), [2] proposed
a method to calculate confidence intervals which are valid irrespective of the
selection criterion (Posi method), hence their confidence intervals are conser-
vative for a specific model selection criterion. Their confidence intervals are
for parameters in the selected model rather than the true value of the pa-
rameters. [6] studied post-selection inference for lasso in high dimensional
data. [9] generalized the results to sequential regression procedures such as
forward stepwise regression and least angle regression. [3] used the asymp-
totic distribution to calculate confidence intervals for the model parameters
in general likelihood models when they assumed that there exits a true model
(Asymp-AIC method).

In this article, we study post-selection inference for the population param-
eters after using AIC for model selection without assuming a true model to
exist. Assuming σ2 is known, AIC for model M is defined as

AIC(M) = ∥YYY − XXXMβ̂ββM ∥2 + 2σ2|M |. (2)

Knowledge about σ2 may seem restrictive, but [5] showed that in this setting
inference without knowing σ2 is impossible. The main reason is that taking
the variance estimation into account leads to insufficient information about
the parameters for inference. Our simulations show that even we estimate the
σ2 using the same data, the results are still valid. When σ2 is unknown, the
AIC score for each model is different from the score in (2). In that case, one
estimates σ2 within each model by σ̂2 = ∥YYY −XXXMβ̂ββM ∥2/n which leads to the
following formula for AIC for model M :

AIC(M, σ2) = log(∥YYY − XXXMβ̂ββM ∥2) + 2(|M | + 1)
n

. (3)

In a set of models M the model with the smallest value of (2), or (3), is the
best model according to AIC in the considered case.
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2 Post-selection inference

When AIC selects a model, it defines an event which we call the selection
event. If AIC selects model M , i.e. Maic = M , then

AIC(M) ≤ AIC(Mi), ∀Mi ∈ M.

Define PPP M = XXXM (XXXt
MXXXM )−1XXXt

M . Using (2) we can represent the selection
event as

SM (M) =
∩

Mi∈M

{
∥(IIIn − PPP Mi

)YYY ∥2 + 2σ2|Mi| − ∥(IIIn − PPP M )YYY ∥2 − 2σ2|M | ≥ 0
}

=
∩

Mi∈M

{
YYY t(PPP M − PPP Mi)YYY − 2σ2(|M | − |Mi|) ≥ 0

}
. (4)

Similarly when (3) is used for selection, the event can be expressed as

Sσ2

M (M) =
∩

Mi∈M





log




∥∥∥YYY − XXXMi
β̂ββMi

∥∥∥
2

∥∥∥YYY − XXXMβ̂ββM

∥∥∥
2


 ≥ 2(|M | − |Mi|)

n





=
∩

Mi∈M

{
YYY t(IIIn − PPP Mi)YYY · κMi − YYY t(IIIn − PPP M )YYY · κM ≥ 0

}
,(5)

where κMi
= exp (2(|Mi|)/n).

To obtain correct confidence intervals after model selection, we use condi-
tional inference. In other words, for inference for a parameter of the form ηηηt

Mµµµ
in the selected model where ηηηM ∈ Rn and is specified, we need to investigate
the distribution of ηηηt

MYYY | {Maic = M} which is equivalent to working with

ηηηt
MYYY | SM (M).

It is possible to rewrite SM (M) in terms of ηηηt
MYYY . Proofs for the following

results can be found in [4].

Lemma 1. Define T = ηηηt
MYYY and ZZZ = YYY − wwwT where www = ηηηM (ηηηt

MηηηM )−1 (T
and ZZZ are independent). Then

SM (M) =
∩

Mi∈M
{ T twwwtDDDMiwwwT + 2T twwwDDDMiZZZ

+ZZZtDDDMi
ZZZ − 2σ2(|M | − |Mi|) ≥ 0} (6)
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and

Sσ2

M (M) =
∩

Mi∈M
{ T twwwtRRRMiwwwTκMi − T twwwtRRRMwwwTκM

+2T twwwRRRMiZZZκMi − 2T twwwRRRMZZZκM

+ZZZtRRRMi
ZZZκMi

− ZZZtRRRMZZZκM ≥ 0} (7)

where DDDMi
= PPP M − PPP Mi

and RRRMi
= IIIn − PPP Mi

.

As expressions (6) and (7) show, the selection event can be written via
quadratic functions of T . For the selection event in (6), define

ai = wwwtDDDMi
www, bi = 2wwwDDDMi

ZZZ, ci = ZZZtDDDMi
ZZZ − 2σ2(|M | − |Mi|),

and for the selection event in (7),

ai = wwwtRRRMiwwwκMi − wwwtRRRMwwwκM , bi = 2(wwwRRRMiZZZκMi − wwwRRRMZZZκM ),
ci = ZZZtRRRMiZZZκMi − ZZZtRRRMZZZκM .

For both selection events in (6) and (7), it is obvious that the selection event
can be written as ∩

Mi∈M
{aiT

2 + biT + ci ≥ 0}.

These inequalities lead to allowable values for T , namely, of the form IZZZ
M (M) =

∪l
i=1(ai(ZZZ), bi(ZZZ)). So, the estimator T for the population parameter ηηηtµµµ is a

normal random variable which is restricted in IZZZ
M (M).

Denote the standard normal CDF by Φ(x) and also denote the CDF of
a N(µ, σ2) random variable truncated to D = ∪l

i=1(ai, bi) by F (·; µ, σ2, D)
which can be written as, for x ∈ (ar, br)

F (x; µ, σ2, D) =
∑r−1

i=1 pi + Φ((x − µ)/σ) − Φ((ar − µ)/σ)
∑l

i=1 pi

,

(8)

where pi = Φ((bi − µ)/σ) − Φ((ai − µ)/σ). The following result shows how we
can use (8) as a pivotal quantity.

Result 1: Let ηηη ∈ Rn be fixed, T = ηηηtYYY and the selection event is SM (M),
Then

F
(

T ;ηηηtµµµ, σ2 ∥ηηη∥2
, IZZZ

M (M)
)

| SM (M) ∼ Unif (0, 1). (9)
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In post-selection inference, we are interested in constructing confidence in-
tervals for parameters in the selected model. We mainly focus on a one-
dimensional parameter. For parameters in the selected model, we construct
confidence intervals for each parameter separately. In general, for ηηηtµµµ ∈ R we
are interested in obtaining a confidence interval [L, U ] such that P (L ≤ ηηηtµµµ ≤
U |IZZZ

M (M)) = 1 − α. We can use (9) to construct confidence intervals based
on the method of pivotal quantities.

Result 2 Let ηηη ∈ Rn and T = ηηηtYYY . Define L and U such that

F (T ; L, σ2 ∥ηηη∥2
, IZZZ

M (M)) = 1 − α

2 , F (T ; U, σ2 ∥ηηη∥2
, IZZZ

M (M)) = α

2 ,

then [L, U ] is a confidence interval for ηηηtµµµ conditional on Maic = M such that
P (ηηηtµµµ ∈ [L, U ] | Maic = M) = 1 − α.

Result 2 is a general result, because ηηη ∈ Rn can be defined by the user. For
instance, considering ηηηt = eeei(XXXt

MXXXM )−1XXXt
M as the direction of interest for

inference, Result 2 provides a confidence interval for the ith parameter in the
selected model.

If the true model is indeed linear, i.e. there exist a βββ0 such that µµµ = XXXβββ0,
and AIC selects a model M which does not contain all non-zero parameters,
then β̂ββ is an unbiased estimator not for the true parameters but for

βββM = βββ0[M ] + (XXXt
MXXXM )−1XXXt

MXXXMcβββ0[M c] (10)

where M c denotes the parameters not in the model M and βββ0[M ] represents
the true coefficients in the model M . Result 2 can be used to calculate the
confidence intervals for the components of βββM .

3 Simulation study

Consider
Yi = sin(2xi) + ϵi, i = 1, . . . , n,

where xi ∼ N(0, 4) and ϵi
i.i.d∼ N(0, 9) for i = 1, . . . , 50. In the models,

consider orthogonal polynomials of degree 8. We include the intercept and
the first order of the polynomial in all models and we fit all possible models
with the other 7 terms (27 models). Denote the orthogonal polynomials by
ggg(x) = (g1(x), . . . , g8(x)), we want to approximate sin(2x) by orthogonal poly-
nomials. We run the simulation until the model with M = (β0, β1, β3, β5) has
been selected 1000 times. Denote g1g1g1 = (1n, ggg), including a unit column for
the intercept. The confidence intervals are calculated for the components of
(g1Mg1Mg1M

tg1Mg1Mg1M )−1g1Mg1Mg1M
t sin(2xxx).
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Figure 1: Mean of confidence intervals and their coverage probabilities over
1000 replications for different methods.

Figure 1 shows the mean of the confidence intervals over 1000 simulation
runs for different methods along with their coverage probabilities for β3 and
β5. We denote the proposed method by AIC(σ) when we use the knowledge
about the σ and denote by AIC(σ̂) where we estimate the variance in the
full model. The results for [3] (Asymp-AIC) and [2] (Posi) are also presented.
Both AIC(σ) and AIC(σ̂) outperform other methods in terms of confidence
interval lengths. The naive method leads to confidence intervals with similar
length but the coverage probability is lower than the nominal value.

4 Conclusion

We proposed a new method for considering the selection randomness in in-
ference by AIC for linear regression. In contrast the Asymp-AIC proposed
by [3] which holds asymptotically, we do not need to simulate from the con-
strained multivariate normal distribution and the results are exact even in
small sample sizes. The method performs better than PostAIC when the lin-
ear model is not the correct model. For normal linear regression models this
method can be considered as a complement for PostAIC. Because if we assume
the selected model is correct, the PostAIC can generate accurate confidence
intervals; otherwise, the proposed method in this chapter can be used.

Acknowledgements: Your acknowledgements.
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The Elicitation Problem
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Competing point forecasts for functionals such as the mean, a quantile, or a
certain risk measure are commonly compared in terms of loss functions. These
should be incentive compatible, i.e., the expected score should be minimized
by the correctly specified functional of interest. A functional is called elicitable
if it possesses such an incentive compatible loss function. With the squared
loss and the absolute loss, the mean and the median possess such incentive
compatible loss functions, which means they are elicitable. In contrast, variance
or Expected Shortfall are not elicitable. Besides investigating the elicitability of
a functional, it is important to determine the whole class of incentive compatible
loss functions as well as to give recommendations which loss function to use in
practice, taking into regard secondary quality criteria of loss functions such as
order-sensitivity, convexity, or homogeneity.

Keywords: Consistency, Elicitability, Expected Shortfall, Scoring functions,
Value at Risk

1 Evaluating and comparing forecasts

“From the cradle to the grave, human life is full of decisions. Due to the inherent
nature of time, decisions have to be made today, but at the same time, they
are supposed to account for unknown and uncertain future events. However,
since these future events cannot be known today, the best thing to do is to
base the decisions on predictions for these unknown and uncertain events. The
call for and the usage of predictions for future events is literally ubiquitous and
even dates back to ancient times.” [2] Today, elaborated forecasts are present
in a variety of different disciplines: government, business, finance, the energy
market, agriculture, or everyday life.

Assume we have m ∈ N competing experts issuing their forecasts for time
t = 1, . . . , N . Then, one has prediction-observation-sequences

(
x

(i)
t , yt

)
t=1,...,N i ∈ {1, . . . ,m}. (1)

∗Corresponding author: tobias.fissler@stat.unibe.ch
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The values yt are ex post realizations of a time series (Yt)t∈N, taking values in
an observation domain O, whereas x(i)

t are ex ante forecasts taking values in
an action domain A. Assessing the quality of the forecasts, one can ask two
main questions: (i) How good is the forecast at hand in absolute terms? And
(ii) How good is the forecast at hand in relative terms? Question (i) deals with
forecast validation, whereas question (ii) is concerned with forecast selection,
forecast comparison, or forecast ranking. The concept of elicitability – and the
elicitation problem in particular – focuses on question (ii).

1.1 Consistent scoring functions and elicitability

To introduce the abstract decision-theoretic framework of forecast comparison,
there is no need to specify the observation domain O and the action domain
A. In particular, the observations can be real-valued, vector-valued, but
also functional-valued or even set-valued. Acknowledging the uncertainty of
future outcomes, the forecasts can be probabilistic in nature, taking the form
of probability distributions or densities. In this case, the action domain A
coincides with a class of probability distributions F where one assumes that F
contains the (conditional) distributions Ft of Yt. On the other hand, one is often
interested in certain statistical properties of the underlying distribution Ft ∈ F
of Yt such as the mean, the median, or a certain risk measure. Mathematically
speaking, such a property can be specified in terms of a functional T : F → A.
In this situation, one speaks about point forecasts, and typically, A coincides
with O (e.g. in case of the mean) where A = Rk, but might also be functional-
valued or set-valued. Interestingly, the concept of probabilistic forecasts can be
covered by the latter upon considering the identity map on F as the functional
T . For most of the forthcoming results, we focus on vector-valued point
forecasts, meaning A = Rk, and O = Rd.

Commonly, competing forecasts are assessed in terms of loss or scoring
functions S : A×O→ R, with the most popular choices S(x, y) = |x− y|, or
S(x, y) = (x− y)2 when A = O = R. Thus, if a forecaster reports the quantity
x ∈ A and y ∈ O materializes, she is penalized by S(x, y) ∈ R. Given the
competing prediction-observation-sequences at (1), the ranking is done in terms
of the realized scores S̄(i)

N = 1
N

∑N
t=1 S(x(i)

t , yt), i ∈ {1, . . . ,m}. That is, a fore-
caster is deemed to be the better the lower her realized score is. However, this
ranking depends on the choice of the scoring function S. To incentivize truthful
and hones forecasts, the Bayes act arg minx∈A EF [S(x, Y )] should coincide
with the correctly specified forecast T (F ), hence, the scoring function must
be chosen in line with the functional T . If T (F ) = arg minx∈A EF [S(x, Y )]
for all F ∈ F , S is called strictly F-consistent for T : F → A. Following the
terminology of [5, 8], a functional T : F → A is called elicitable if it possesses
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a strictly F-consistent scoring function S. Besides meaningful forecast com-
parison and ranking, the elicitability of a functional opens the possibility to
do M -estimation. That is, under certain regularity conditions on the sequence
(Yt)t∈N detailed e.g. in [6], T̂n = arg minx∈A

1
n

∑n
t=1 S(x, Yt) is a consistent

estimator for T , if S is strictly consistent for T . Similarly, elicitability leads the
way to generalized regression such as quantile regression or expectile regression;
see [7, 9].

2 The elicitation problem

Having settled the basic definitions, one can formulate a threefold elicitation
problem with respect to a fixed functional T : F → A.

(i) Is T elicitable?

(ii) What is the class of strictly F-consistent scoring functions for T?

(iii) What are good choices of strictly F-consistent scoring functions?

The rest of this abstract summarizes some important ideas, contributions, and
results concerning the elicitation problem.

2.1 Which functionals are elicitable?

One natural way to show the elicitability of a functional is by directly providing
a strictly consistent scoring function. In particular, one can show that under
certain regularity assumptions, the piecewise linear loss Sα(x, y) = (1{y ≤
x} − α)(x− y) is strictly consistent for the α-quantile, and that the piecewise
squared loss Sτ (x, y) = |1{y ≤ x} − τ |(x − y)2 is strictly consistent for the
τ -expectile (in particular, the mean and the median, as well as all moments,
are elicitable, subject to mild regularity assumptions). [11] has provided a
powerful necessary condition in terms of the level sets of the functional at
hand, which is often relatively easy to check in practice.

Proposition 1 (Convex level sets [11]). Let T : F → A be elicitable. Then,
for any F0, F1 ∈ F such that T (F0) = T (F1) = t and for any λ ∈ (0, 1) such
that Fλ = (1− λ)F0 + λF1 ∈ F it holds that T (Fλ) = t.

Remarkably, the proof works independently of the specific choice of A.
The result shows that variance and Expected Shortfall (ES) are generally not
elicitable [5]. If A = R and if the functional T fulfills some continuity conditions,
[12] showed the sufficiency of convex level sets for elicitability. Similar results
for sufficiency lack for the case A = Rk when k > 1.
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In case of vector-valued functionals, a functional T = (T1, . . . , Tk) consisting
of elicitable components is again elicitable. If Sm is strictly consistent for
Tm, then S(x1, . . . , xk, y) =

∑k
m=1 Sm(xm, y) is a strictly consistent scoring

function for T . This observation provokes the questions (a) whether strictly
consistent scoring functions must be necessarily of this form, and (b) whether
functionals consisting only of elicitable components are the only vector-valued
functionals. The revelation principle [11] gives a negative answer to question
(b). It asserts that any bijection of an elicitable functional is elicitable. Since
the pair (mean, variance) is a bijection of the first two moments, which are
elicitable, this shows the elicitability of the pair (mean, variance), even though
variance itself is not elicitable. This somehow unexpected result leads to the
natural question: Are bijections of functionals with elicitable components the
only elicitable functionals? It turns out that this is not the case: The two
risk measures Expected Shortfall (ES) and Value at Risk (VaR) are, as a
pair, jointly elicitable even though ES itself is not elicitable; see Theorem 1.
Moreover, there is generally no (known) bijection between (VaR, ES) and a
vector consisting only of elicitable components.

2.2 Determine the class of strictly consistent scoring functions

Interestingly, strictly consistent scoring functions for a functional T are not
unique. E.g., if S is strictly consistent for T , then (x, y) 7→ λS(x, y) + a(y) is
also strictly consistent for T for any λ > 0 and any ‘offset-function’ a : O→ R.
Moreover, the class of strictly consistent scoring functions is convex. However,
there is far more flexibility in the class. A powerful tool is the so-called
Osband’s principle [11, 3]. It connects the gradient of an expected score
with the expectation of an identification function. An identification function
for a functional T : F → A ⊆ Rk is a function V : A × O → Rk such that
EF [V (x, Y )] = 0 if and only if x = T (F ) for all F ∈ F . Examples are
V (x, y) = x− y for the mean and V (x, y) = 1{y ≤ x} − α for the α-quantile.
If a functional T : F → A ⊆ Rk is elicitable and possesses an identification
function, then, under some richness conditions on the class F , there exists a
matrix-valued function h : A→ Rk×k such that

∇x EF [S(x, Y )] = h(x) EF [V (x, Y )] ∀x ∈ A, ∀F ∈ F . (2)

One can also derive a second order Osband’s principle considering the Hessian
∇2
x EF [S(x, Y )] of the expected score. Under appropriate smoothness condi-

tions, the Hessian must be symmetric for all F ∈ F and positive semi-definite
at x = T (F ). This implies further necessary conditions on the matrix-function
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h often even leading to sufficient conditions for strict consistency.1 Exploiting
Osband’s principle, one can show that – under some regularity conditions –
S : R×R→ R is a strictly consistent scoring function for the mean if and only
if S is of Bregman type, that is,

S(x, y) = φ′(x)(x− y)− φ(x) + a(y), (3)

where φ : R→ R is strictly convex. Similarly, S is strictly consistent for the
α-quantile if and only if

S(x, y) =
(
1{y ≤ x1} − α

)
g(x1)− 1{y ≤ x1}g(y) + a(y), (4)

where g : R→ R is strictly increasing. Indeed, taking derivatives of the expected
score, (3) becomes ∂x EF [S(x, Y )] = φ′′(x)(x−EF [Y ]) such that φ′′ plays the
role of h in (2). For (4), one obtains ∂x EF [S(x, Y )] = g′(x)(F (x)− α), such
that g′ = h in (2).

Expected Shortfall is jointly elicitable with Value at Risk

VaR and ES are the most popular risk measures in practice. For a financial
position Y with distribution F and a level α ∈ (0, 1), they are defined as

VaRα(F ) := F−1(α) = inf{x ∈ R : F (x) ≥ α},

ESα(F ) := 1
α

∫ α

0
VaRβ(F ) dβ = EF [Y |Y ≤ VaRα(F )].

That means risky positions yield large negative values of VaRα or ESα. In-
tuitively, VaRα gives the worst loss out of the best (1 − α) × 100% of all
cases, whereas ESα gives the average loss given one exceeds VaRα. There is
an ongoing debate in academia and industry which risk measure to use. The
debate mainly concentrates on ESα and VaRα. The latter, as a quantile, is
elicitable under mild regularity conditions, it fails to be superadditive, thus
violating the coherence property of risk measures. Moreover, it fails to take
into account the size of losses beyond the level α. Conversely, ESα considers
the whole tail of the distribution beyond the level α, it fulfills the coherence
property, but fails to be elicitable. In this light, the following result is crucial
and opens the possibility to meaningful forecast comparison of joint (VaR,
ES)-forecasts which is of particular importance in the context of quantitative
risk management and especially the question of backtestability [4, 10].

1Using second order Osband’s principle, one can show for example, that any vector of
different quantiles and / or expectiles only possesses strictly consistent scoring functions
that are additively separable. On the other hand, vectors of expectations allow for a
more flexible structure similar to (3). This gives answers to the previous question (a).
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Theorem 1 ([3]). Let α ∈ (0, 1). Let F be a class of distribution functions
on R with finite first moments and unique α-quantiles.
(i) If φ : R→ R is strictly convex and if for any x2 ∈ R, the function

[x2,∞)→ R, x1 7→ g(x1) + φ′(x2)x1
α

(5)

is strictly increasing, then the scoring function S : A0 × R→ R, where A0 :=
{(x1, x2) ∈ R2 : x1 ≥ x2}, of the form

S(x1, x2, y) =
(
1{y ≤ x1} − α

)
g(x1)− 1{y ≤ x1}g(y) + a(y) (6)

+ φ′(x2)
(
x2 +

(
1{y ≤ x1} − α

)x1
α
− 1{y ≤ x1}

y

α

)
− φ(x2),

is strictly F-consistent for (VaRα,ESα).
(ii) Conversely, under some regularity conditions, all strictly consistent scoring
functions for (VaRα,ESα) are of the form given at (6).

Part (ii) of Theorem 1 asserting the necessity of the form at (6) can be shown
using Osband’s principle with the joint two-dimensional identification func-
tion V (x1, x2, y) =

(
1{y ≤ x1} − α, x2 +

(
1{y ≤ x1} − α

)
x1
α − 1{y ≤ x1} yα

)′.
Part (i) can be proved by anticipating that for fixed x1 the function (x2, y) 7→
S(x1, x2, y) is of Bregman-type with minimum at V2(x1, x2, y) = 0. On
the other hand, for fixed x2, due to the condition at (5), the function
(x1, y) 7→ S(x1, x2, y) is a strictly consistent scoring function for the α-quantile.

2.3 Secondary quality criteria besides strict consistency

Facing the multitude of strictly consistent scoring functions illustrated at
(3), (4), and (6), this burden of choice calls for new concepts such as the
notion of forecast dominance introduced in [1]. Alternatively, it motivates
the introduction of secondary quality criteria besides strict consistency giving
guidance which scoring function to use. This line of research is pursued
in [2]. Generalizations of the concept of order-sensitivity [8] to the higher
dimensional setting are introduced, ensuring meaningful forecast comparison
of possibly misspecified predictions in particular settings. Convexity of scoring
functions can show to be beneficial for optimization purposes, but also shed
new light on the paradigm of maximizing the sharpness of a forecast subject
to calibration as well as on incentives for cooperation between competing
forecasters. Finally, equivariance properties of functionals motivate the notion
of order-preserving scoring functions, nesting concepts such as homogeneity or
translation invariance of scoring functions.
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Functional principal component analysis (FPCA) is the key technique for
dimensionality reduction and detection of main directions of variability present
in functional data. However, it is not the most suitable tool for the situation
when analysed dataset contains repeated or multiple observations, because
information about repeatability of measurements is not taken into account.
Multilevel functional principal component analysis (MFPCA) is the modified
version of FPCA developed for data observed at multiple visits. The original
MFPCA method was designed for balanced data only, where for each subject
the same number of measurements is available. In this article we propose the
modified MFPCA algorithm which can be applied for unbalanced functional
data. The modified algorithm is validated and tested on real–world sleep data.

Keywords: multilevel functional principal component analysis, functional
data with multiple observations, sleep probabilistic curves

Introduction

Functional principal component analysis (FPCA) is an appropriate tool for
detecting main directions of variability and dimensionality reduction of func-
tional data [1]. On the other hand, FPCA considers each curve as a single
observation and therefore it is not appropriate for detecting sources of variabil-
ity in datasets with multiple observations. These multiple observations can be
represented by repeated collection of data at multiple visits.

To address this repeated observations data design, the multilevel functional
principal component analysis (MFPCA) method was developed [1]. MFPCA
decomposes observed functional data into three parts i) the overall mean,
common for all subjects, ii) the subject–specific deviation from the overall
mean, and iii) the remaining deviation from a subject–specific profile. Moreover,
the method is able to transform high dimensional functional data (possibly

∗Corresponding author: zuzana.rostakova@gmail.com
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infinite) into finite dimensional vector spaces of principal components at two
levels.

The original MFPCA method was proposed and validated only for data with
the same number of observations per subject. In this article we demonstrate
that in its original form the method is not able to properly detect subject–
specific profiles when the number of observations among subjects is different.
Therefore we propose the modification of the original MFPCA method which
can better deal with the unbalanced data situation.
The article is organised in the following way. The general description of

MFPCA is given in the first section. The modified MFPCA method for
unbalanced data is proposed in Section 2. In Section 3 the method is validated
on real–world sleep data. Finally, Section 4 provides discussion and a few
concluding remarks.

1 Multilevel functional principal component
analysis

MFPCA deals with functional data with repeated observations in order to
detect sources of variability at two levels; the between– and within–subject
variability [1].

Let consider I subjects with J observations Xij , i = 1, . . . , I; j = 1, . . . , J .
For simplicity we assume that observed functional data are defined at the same
time grid within a closed interval T and are sufficiently smooth. Moreover the
observations or visits within each subject should have natural ordering. In [1],
the authors used a two–way functional ANOVA model in order to decompose
Xij into a fixed and random part

Xij(t) = µ(t) + ηj(t) + Zi(t) +Wij(t), t ∈ T. (1)

The overall mean µ and the visit–specific deviation from the overall mean

ηj , j = 1, . . . , J are fixed effects. For identifiability we assume
J∑

j=1
ηj(t) =

0, t ∈ T. The subject–specific deviation from the visit–specific mean Zi and
the remaining deviation from the subject– and visit–specific profiles Wij

are uncorrelated stochastic processes with mean 0 and covariance functions
S1 : T × T → R and S2 : T × T → R.
According to the Karhunen-Loewe expansion the stochastic processes Zi

and Wij can be decomposed in the following way

Zi(t) =
∞∑

k=1
αikφ

(1)
k (t) Wij(t) =

∞∑

l=1
βijlφ

(2)
l (t)
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where αik and βijl are random variables with mean 0 and

E(αikαil) =
{

0, if k 6= l,

λ
(1)
k , if k = l,

E(βijkβijl) =
{

0, if k 6= l,

λ
(2)
k , if k = l.

Moreover, {αik, k = 1, 2, . . . } are uncorrelated with {βijl, l = 1, 2, . . . }. We
call them the level 1 and level 2 principal component scores. Two sets of
orthonormal functional bases of the L2 space

{φ(1)
k , k = 1, 2, . . . } and {φ(2)

l , l = 1, 2, . . . }

which represents the functional principal components (FPCs) at level 1 and
level 2 are not necessarily mutually orthogonal.
In [1], the following three covariance functions are considered in order to

estimate functional principal components at both levels

KT (s, t) = Cov (Xij(s), Xij(t)) = S1(s, t) + S2(s, t),
KB(s, t) = Cov (Xij(s), Xik(t)) = S1(s, t),

KW (s, t) = KT (s, t)−KB(s, t) = 1
2Cov (Xij(s)−Xik(s), Xij(t)−Xik(t)) = S2(s, t).

In other words, FPCs at level 1 are eigenfunctions of KB and FPCs at level 2
are eigenfunctions of KW .

Using the method of moments, the following estimators of unknown quantities
are proposed in [1]

µ̂(t) = 1
IJ

I∑

i=1

J∑

j=1
Xij(t), η̂j(t) = 1

I

I∑

i=1
Xij(t)− 1

IJ

I∑

i=1

J∑

j=1
Xij(t), t ∈ T

K̂T (s, t) = 1
IJ

I∑

i=1

J∑

j=1
(Xij(s)− µ̂(s)− η̂j(s)) (Xij(t)− µ̂(t)− η̂j(t)) , (2)

K̂B(s, t) = 1
IJ(J − 1)

I∑

i=1

J∑

j 6=l

(Xij(s)− µ̂(s)− η̂j(s)) (Xil(t)− µ̂(t)− η̂l(t)) ,

(3)
K̂W (s, t) = K̂T (s, t)− K̂B(s, t), (4)

where µ̂ and η̂j are estimated similarly as in the standard ANOVA model [1].
The way of selecting the number of functional principal components at each

level separately, as well as the procedure for computing principal component
scores at both levels are described in details in [1].
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2 MFPCA for unbalanced data design

The original MFPCA algorithm was designed for balanced data with ordered
visits. However, the authors state that this assumption is not restrictive and
the method is able to deal with unbalanced data as well.
Let consider I subjects with Ji, i = 1, . . . , I observations. In this case,

the number of observations may differ among subjects and we assume that
the order of observations within each subject is exchangeable. Therefore the
visit–specific deviations ηj from the overall mean are set to zero. The model
(1) changes into one–way functional ANOVA

Xij(t) = µ(t) + Zi(t) +Wij(t), t ∈ T, j = 1, . . . , Ji, i = 1, . . . I. (5)

By computing the expected values of the covariance functions estimators (2),
(3) and (4) for data with unbalanced design and η̂j ≡ 0 we obtain

E
(
K̂T (s, t)

)
=
(

1− A2
A2

1

)
S1(s, t) +

(
1− 1

A1

)
S2(s, t), (6)

E
(
K̂B(s, t)

)
=
(

1− 2
A1

A3 −A2
A2 −A1

+ A2
A2

1

)
S1(s, t)− 1

A1
S2(s, t),

E
(
K̂W (s, t)

)
=
(

2
A1

A3 −A2
A2 −A1

− 2A2
A2

1

)
S1(s, t) + S2(s, t),

where Ak =
∑I

i=1 J
k
i , k = 1, 2, 3. It means, that for I → ∞ and a bounded

number of observations for each subject 1 ≤ Ji ≤M,M ∈ N, the matrices K̂B

and K̂W are only asymptotically unbiased estimators of S1 and S2.
Therefore, when data are unbalanced, we propose the following modification

of the covariance functions estimators. First, let define

K̂W

UU
(s, t) = 1

∑I
i=1 Ji

I∑

i=1

Ji∑

j:Ji>1

(
Xij(s)− µ̂(s)

)(
Xij(t)− ν̂i

(−j)(t)
)
,

ν̂i
(−j)(t) = 1

Ji − 1

Ji∑

l 6=j

Xil(t), t ∈ T.

While E
(
K̂W

UU
(s, t)

)
= S2(s, t) which holds also for unbalanced data, we

can estimate FPCs at level 2 directly from K̂W

UU
. The estimator (2) for KT

remains the same with expected value (6). Therefore FPCs at level 1 can be
estimated as eigenfunctions of the following function

K̂B

UU
= A2

1
A2

1 −A2

(
K̂T −

A1 − 1
A1

K̂W

UU
)
, E

(
K̂B

UU
(s, t)

)
= S1(s, t).
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3 Application to sleep data

Sleep is a continuous process which can be described by a finite number of sleep
stages. Probabilistic sleep model (PSM) characterises sleep with probability
values of 20 sleep microstates [3]. Considering the probability values as a
function of time we obtain a curve.
In the first step we took 292 probabilistic sleep curves of the PSM applied

to sleep recordings from the SIESTA database [2]. These curves represent
the sleep microstate similar to REM (or rapid eye movement sleep stage).
Using the two–step clustering approach [4], the curves were divided into 12
clusters depicted in Figure 1. Objective of this study is to identify cluster
representatives, which can be used for the further analysis of the sleep process.
With this aim in mind, we applied model (5) to the clustered curves. Effectively
this means that we have 12 clusters (or ‘subjects’) with a different number of
observations, in this case the number of curves in each cluster. The number of
curves varied from 4 (cluster 9) to 117 (cluster 12).
Using the original and modified MFPCA algorithms the cluster–specific

profiles Pi(t) = µ̂(t) + Ẑi(t), t ∈ T were computed for each cluster. The
superior performance of the modified MFPCA algorithm is visible especially
for clusters 2, 5 or 9 consisting of a smaller number of curves. Taking into
account that the original sleep probabilistic curves are strictly positive, the
cluster–specific profiles estimated by the original MFPCA method reached for
short time subintervals unexpected negative values.

4 Conclusion

In this article we described modified version of the multilevel functional prin-
cipal component analysis method [1]. MFPCA is an appropriate tool for
detection of main direction of variability for functional data with repeated
observations. Original MFPCA was developed only for balanced data where
each subject has the same number of observations and the observations have
natural order.

However, we found and demonstrated on real sleep data, that in its original
form the algorithm applied to unbalanced data leads to inferior results because
the estimators of covariance functions described in [1] are biased.This is
especially true for datasets with a small sample size.
In this article we proposed the modified estimators of covariance functions

for unbalanced data. These leads to the unbiased estimation of functional
principal components at level 1 and 2. We proved good performance of the
proposed modified version of MFPCA on the analysed sleep data.
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Figure 1: Cluster analysis of the sleep microstate similar to the REM sleep
stage with 292 sleep probabilistic curves (light green) divided into
12 clusters. Cluster–specific profiles estimated by the modified MF-
PCA algorithm (red) form better cluster representatives than their
counterparts estimated by the original MFPCA algorithm (blue).
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In this paper the Mallows’ model based on Lee distance is considered and
compared to models induced by other metrics on the permutation group.
As an illustration, the complete rankings from the American Psychological
Association election data are analyzed.
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1 Mallows’ models

A full ranking of N items simply assigns a complete ordering to the items.
Any such ranking vector can be viewed as an element π of the permutation
group SN generated by the first N natural integers. Thus the notation

π =< π−1(1), π−1(2), . . . , π−1(N) >

is used for the permutation π which corresponds to listing the various items in
their ranked order. There are various nonparametric methods for modelling
rank data. Some models have larger probabilities for rankings that are “close”
to a “modal” ranking π0. An example of such probability model is given by

Pθ,π0(π) = eθd(π, π0)− ψ(θ) for π ∈ SN , (1)

where θ is a real parameter (θ ∈ R), d(·, ·) is a metric on SN , π0 is a fixed
ranking and ψ(θ) is a normalizing constant. When θ > 0, π0 is the modal
ranking, for θ < 0, π0 is an antimode, and for θ = 0, Pθ,π0 is the uniform
distribution. More general model, with d(·, ·) being a discrepancy function,
is suggested by Diaconis [4], but since all distances used in this paper are
metrics, d(·, ·) could be regarded as a metric. Deza and Huang [3] considered
some metrics on SN which are widely used in applied scientific and statistical
problems.

∗Corresponding author: n.nikolov@math.bas.bg
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F (π, σ) =
N∑

i=1
| π(i)− σ(i) | Spearman’s footrule

R (π, σ) =
(

N∑

i=1
(π(i)− σ(i))2

)1/2

Spearman’s rho

M (π, σ) = max
1≤i≤N

| π(i)− σ(i) | Chebyshev metric

K (π, σ) = # {(i, j) : 1 ≤ i, j ≤ N,
π(i) < π(j), σ(i) > σ(j)}

Kendall’s tau

C (π, σ) = N minus number of cycles in σπ−1 Cayley’s distance

U (π, σ) = N minus length of the longest
increasing subsequence in σπ−1

Ulam’s distance

H (π, σ) = # {i ∈ {1, 2, . . . , N} : π(i) 6= σ(i)} Hamming distance

L (π, σ) =
N∑

i=1
min (| π(i)− σ(i) |, N− | π(i)− σ(i) |) Lee distance

Easily can be shown that all of the presented metrics possess the following
important property.

Definition 1. The metric d on SN is called right-invariant, if and only if
d (π, σ) = d (π ◦ τ, σ ◦ τ) for all π, σ, τ ∈ SN .

Critchlow [1] pointed that the right-invariance of metric is necessary require-
ment since it means that the distance between rankings does not depend on
the labelling of the items. More properties for these metrics can be found in
Critchlow [1, 2], Diaconis [4] and Marden [7].

If d(·, ·) is right-invariant, then (1) can be defined by the random variable
D(π) = d(π, π0) = d(ππ−1

0 , eN ), where π ∼ Uniform(SN ) and eN is the
identity permutation (eN =< 1, 2, . . . , N >). Notice that the distribution of D
does not depend on π0 and it could be assumed that D(π) = d(π, eN ). Let’s
use the notation D[∗] for the random variable D induced by some distance [∗]
from the listed above. The special cases of (1) with D = DK and D = DR2

are first investigated by Mallows [6]. Models based on DC and DH can be
found in Fligner and Verducci [5].

Model (1) could be significantly simplified if the distribution of D is known
and can be written explicitly. Let m(t) be the moment generating function of
D. Then, as shown in [5],
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eψ(θ) =
∑

π∈SN

eθD(π) = N !
∑

di

P (D = di)eθdi = N !m(θ)

⇒ ψ(θ) = log(N !m(θ)) . (2)

For DF , DR, DM , DK , DC , DU and DH numerical characteristics, exact
distributions, asymptotic approximations and statistical applications can be
found in Diaconis [4] and Marden [7]. The goal of this paper is to study
the Mallows’ model based on DL and compare it to the models induced by
the other given metrics. The rest of the paper is organized as follows. In
Section 2 some properties of the distribution of Lee distance are derived under
uniformity assumption. Maximum likelihood estimations and testing procedure
for deviation from the Uniform distribution are proposed in Section 3. In
Section 4 a comparison between the models based on the eight distances is
made.

2 Lee distance

Let’s first notice that DL(π) = L(π, eN ) can be decomposed in N terms:

DL(π) =
N∑

i=1
min (| π(i)− i |, N− | π(i)− i |) =

N∑

i=1
cN (π(i), i) . (3)

There is an interpretation of cN (i, j) := min (| i− j |, N− | i− j |) in terms
of graph theory. Let G be a simple cycle graph with nodes {i}Ni=1 and edges
N−1⋃

i=1
{i, i + 1} and {N, 1}. Then cN (i, j) is the minimum distances over G

between the nodes i and j. Obviously, 0 ≤ cN (i, j) ≤ N/2 for even N and
0 ≤ cN (i, j) ≤ (N − 1)/2 for odd N , i.e.

0 ≤ cN (i, j) ≤
[
N

2

]
, for all i, j = 1, 2, . . . , N , (4)

where [x] is the greatest integer less than or equal to x. From (3) and (4) it
follows that

0 ≤ DL(π) ≤ N
[
N

2

]
, for all π ∈ SN . (5)

The lower limit in (5) is reached only for π = eN . When N is even the upper
limit is reached only for π equals to

e∗N :=< N

2 + 1, N2 + 2, . . . , N − 1, N, 1, 2, . . . , N2 − 1, N2 > ,
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and in the case of odd integers N the maximum value of DL is reached when
π is equal to e′N or e′′N , where

e′N :=< N + 1
2 ,

N + 1
2 + 1, . . . , N − 1, N, 1, . . . , N + 1

2 − 2, N + 1
2 − 1 >

e′′N :=< N + 1
2 + 1, N + 1

2 + 2, . . . , N − 1, N, 1, . . . , N + 1
2 − 1, N + 1

2 > .

Since

cN (π(i), eN (i)) + cN (π(i), e∗N (i)) = min (| π(i)− i |, N− | π(i)− i |) +

min
(
| π(i)− N

2 − i |, N− | π(i)− N

2 − i |
)

= N

2 , for i = 1, 2, . . . , N2 ,

and

cN (π(i), eN (i)) + cN (π(i), e∗N (i)) = min (| π(i)− i |, N− | π(i)− i |) +

min
(
| π(i)− i+ N

2 |, N− | π(i)− i+ N

2 |
)

= N

2 , for i = N

2 + 1, . . . , N ,

the relation

L(π, eN ) + L(π, e∗N ) =
N∑

i=1
cN (π(i), eN (i)) + cN (π(i), e∗N (i)) = N2

2 , (6)

is true for all π ∈ SN . The right-invariant property of L implies that L(π, eN )
and L(π, e∗N ) have the same distribution when π ∼ Uniform(SN ). From that
fact and (6) it follows that

P (DL = k) = P

(
DL = N2

2 − k
)

, for k = 0, 1, . . . , N
2

2 , i.e.

the distribution of DL is symmetric when N is even. Furthermore DL can
take only even values since

DL(π) ≡
N∑

i=1
min (| π(i)− i |, N− | π(i)− i |) (mod 2)

⇒ DL(π) ≡
N∑

i=1
| π(i)− i |≡ 0 (mod 2)

for even integers N .
The probability mass function of DL for N = 5, 6, 7, 8 is shown on the figure

below.
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3 Parameters estimation and tests for uniformity

Formula (2) can be used to find estimations for the unknown parameters in
(1). Suppose that there are n observed complete rankings π(1), π(2), . . . , π(n)

and the mode π0 in (1) is unknown. Then the loglikelihood function is given
by

l(θ, π0, n) = θS(π0)− nψ(θ),

where S(π0) =
n∑

i=1
d(π(i), π0). In order to find the maximum likelihood esti-

mations (MLE’s), first it is necessary to calculate

π̂min = argmin
π∈SN

S(π) and π̂max = argmax
π∈SN

S(π) .

For θ < 0, let θ̂min be the value for which l(θ, π̂min, n) is maximized. For θ > 0,
let the maximum of l(θ, π̂max, n) occurs for θ = θ̂max. Finally, the MLE’s

(
θ̂, π̂0

)
=





(
θ̂min, π̂min

)
, if l(θ̂min, π̂min, n) ≥ l(θ̂max, π̂max, n)

(
θ̂max, π̂max

)
, otherwise .

If θ̂ = 0 then (1) is the uniform model and π̂0 is not unique since for all
π ∈ SN the loglikelihood, l(0, π, n), is the same. For Spearman’s rho R(·, ·)
and Kendall’s tau K(·, ·) it can be shown that θ̂min = −θ̂max. From (6) it
follows that θ̂min = −θ̂max is also valid for Lee distance L(·, ·), when N is even.
In these cases l(θ̂min, π̂min, n) = l(θ̂max, π̂max, n) and it is enough to find just
π̂min and θ̂min. The described MLE’s and other methods for estimating θ and
π0 can be found in [7].
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For testing the null hypothesis H0 : θ = 0 (uniform model) against the
alternative HA : θ 6= 0, Marden [7] considered the likelihood ratio statistic
(LRS) given by

LRS = 2
[
lA(θ̂, π̂0, n)− l0(0, π, n)

]
= 2

[
θ̂S(π̂0)− nψ(θ̂) + n log(N !)

]
,

where l0 and lA are the loglikelihood functions under H0 and HA, respectively,
and

(
θ̂, π̂0

)
are the MLE’s. Let k(π) be the number of observations that are

equal to π ∈ SN . Then the empirical probability for π is k(π)
n

and a quantity,
which measures the total nonuniformity of the data, could be defined by

TNU = 2
∑

π∈SN

k(π)
[
log
(
k(π)
n

)
− log

(
1
N !

)]
.

Similarly to the multiple correlation coefficient in the linear regression,
Marden [7] considered the coefficient

R2 = LRS

TNU
,

which can be used to measure the percentage of nonuniformity in the data
that is explained by the fitted model. Thus R2 = 1 when the model exactly
fits the data, and R2 = 0 if it performs no better than the uniform model.

4 Comparison between the distance based models

In 1980, the American Psychological Association (APA) conducted an election
in which five candidates were running for president and voters were asked to
rank order all of the candidates. The complete rankings of 5738 voters are
given in [4, p. 96]. The average ranks received by candidates A, B, C, D and
E are 2.84, 3.16, 2.92, 3.09, and 2.99, respectively, and the total nonuniformity
of the data is TNU = 1717.51. The fitted Mallows’ models based on the eight
distances considered are given in Table 1.

Since the theoretical distribution of LRS is unknown, it is approximated
via simulations with 1000 trials for each distance, and the results for the mean
and the 95% critical values of LRS’s are presented in the last two columns.
Notice that for all models the hypothesis of uniform distribution is rejected
since LRS’s are much larger than the simulated critical values. In fact all
LRS’s are larger than the maximum simulated values. However, all models
explain less than a third of the nonuniformity, where the model based on DL
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Distance θ̂ π̂0 Ordering LRS R2 LRSsim
mean

LRSsim
95% c.v.

DF 0.0828 51324 BDCEA 282.26 0.1643 4.63 9.62
DR2 −0.0163 15243 ACEDB 150.78 0.0878 3.49 7.95
DM −0.2639 15243 ACEDB 379.54 0.2210 5.49 10.43
DK −0.0722 15243 ACEDB 124.28 0.0723 3.83 8.43
DC −0.2483 23154 CABED 304.21 0.1771 7.22 11.98
DU −0.2505 23154 CABED 181.52 0.1057 6.80 12.06
DH 0.2437 51324 BDCEA 290.16 0.1689 6.74 11.41
DL 0.1656 51324 BDCEA 524.39 0.3053 5.52 10.73

Table 1: Fitted Mallows’ models for APA data

has the highest R2 = 30.53%, and the lowest R2 = 7.23% is obtained when
using DK .

The estimated “modal” orderings (antimodes for θ̂ > 0) are given in the
forth column. The ordering of DR2 , DM and DK coincides with the “modal”
ordering based on the average ranks. As mentioned in [7], there are definite
camps within APA: candidates A and C are research psychologists, D and E
are clinical psychologists, and B is a community psychologist. These groups
can also be noticed from the orderings of DR2 , DM , DK , DC and DU . Since
the number of candidates N = 5 is odd, the maximum value of L(eN , π) is
reached for π = e′N and π = e′′N . Thus the interpretation of the antimode
ordering of DL is more complex.

Candidate B is ranked last in all “modal” rankings, except in models based
on DC and DU , where B separates the groups {A,C} and {D,E}. The rankings,
which are constructed without considering candidate B, could be used to study
the influence of B over the complete rankings models. The MLE’s of the
models’ parameters for the new rankings are given in Table 2.

Distance θ̂ π̂0 Ordering LRSnew R2
new LRSdiff

Simulated
LRSdiff cdf

DF −0.0698 2143 CAED 126.22 0.1268 156.05 0.591
DR2 −0.0177 1243 ACED 59.79 0.0601 90.99 0.769
DM −0.2239 2143 CAED 226.30 0.2273 153.23 0.001
DK −0.0663 1243 ACED 54.64 0.0549 69.64 0.742
DC −0.2532 2143 CAED 251.79 0.2529 52.42 0.000
DU −0.2319 2143 CAED 124.75 0.1253 56.77 0.006
DH −0.1832 2143 CAED 217.59 0.2186 72.58 0.000
DL −0.1311 2143 CAED 265.39 0.2666 259.00 0.007

Table 2: Fitted models without candidate B
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The total nonuniformity of the new data is TNUnew = 995.58. The “modal”
orderings of the remaining four candidates are not changed in the models based
on DR2 , DK , DC and DU , whereas there are new “modal” orderings in the
other models. For DC , DU and DH the coefficient R2

new increases, while for
DF , DR2 , DK and DL it decreases. R2

new is almost the same as R2 for the
model based on DM . The quantity LRSdiff = LRS − LRSnew can be used
to measure the influence of candidate B over the explanatory power of the
models. The value of LRSdiff is simulated 1000 times for all complete models
with parameters given in Table 1. The observed value of LRSdiff and the
simulated empirical cumulative distribution function (taken at the observed
value of LRSdiff ) are given in the last two columns. There is a significant
decrease in the explanatory power of the models based on DF , DR2 and DK ,
since the values of LRSdiff are significant for these models. Thus it can be
suggested that the models based on DM , DC , DU , DH and DL are more
“robust”. Similar conclusion is made in [7, p. 30] by analyzing sport related
rank data.
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Some recent characterization based goodness of
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In this paper some recent advances in goodness of fit testing are presented.
Special attention is given to goodness of fit tests based on equidistribution and
independence characterizations. New concepts are described through some
modern exponentiality tests. Their natural generalizations are also proposed.
All tests are compared in Bahadur sense.

Keywords: asymptotic efficiency, order statistics, independence,V-statistic

1 Introduction

Goodness of fit testing occupy a significant part of nonparametric statistic.
Most of classical tests are based on distance between the assumed distribu-
tion function (d.f.) and its consistent estimate, empirical d.f. Symmetry
tests are analogously constructed. A new approach, that is especially attrac-
tive in recent years, is making tests based on characterizations of different
types. Those tests mostly use U-empirical d.f.’s, U-empirical integral trans-
forms, U-empirical moments etc. The main advantage of these tests is that
they are often free of some distribution parameters. Therefore they are suit-
able for testing composite hypothesis. In addition, there is an abundance
of characterization theorems for some families of distributions, in particular
for exponential and other life distributions, uniform, normal distribution, and
characterizations of the family of symmetric distributions around zero. An
extensive survey is given in classical monograph by Galambos and Kotz (see
[4]) as well as in recent monograph by Ahsanullah (see [1]). Hence, many
different modern goodness of fit tests (GOF) can be constructed (see [17]).

For purpose of comparison of tests, the Bahadur efficiency has become very
popular. One of the reasons is that, unlike Pitman efficiency, it does not
require the asymptotic normality of test statistics. For more details we refer
to [14].
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Bahadur efficiency can be expressed as the ratio of the Bahadur exact slope
c(θ), a function describing the rate of exponential decrease for the attained
level under the alternative, and 2K(θ), the double Kullback-Leibler distance
between the alternative and the set of null distributions. Under closed alter-
natives we use the local Bahadur efficiency given by

e = lim
θ→0

c(θ)
2K(θ) .

According to Bahadur’s theory slopes can be calculated in the following way.
Suppose that, under an alternative indexed by a parameter θ, the sequence
Tn converges in probability to some finite function b(θ). Suppose also that the
large deviation limit

lim
n→∞

n−1PH0 {Tn > t} = −f(t)

exists for any t in an open interval I, on which f is continuous and {b(θ), θ >
0} ⊂ I. Then the Bahadur exact slope is

c(θ) = 2f(b(θ)).
Very often, the main obstacle is to find large deviation function. Crucial
results concerning this problem are given in [15], [16] and [10].

In the following section we describe two types of characterization theorems
and show how, using them, we can construct an integral and a Kolmogorov
type statistic. In order to illustrate the general idea we provide two examples.

2 Characterizations and tests statistics

In this section we focus on so called ”equidistribution based” and ”indepen-
dence based” characterizations and GOF tests based on them.

The first group contains the characterization of the following form.
Let X1, ..., Xmax(m,p) be i.i.d with d.f. F, ω1 : Rm 7→ R1 and ω2 : Rp 7→ R1

two sample functions such. Then the following equivalence hold

ω1(X1, ..., Xm) d= ω2(X1, ..., Xp)
if and only if F belongs to some family F0.

Natural estimators of d.f.’s of ω1 and ω2 are V -empirical d.f.’s given by

Gn1(x) = 1
nm

∑

1≤i1,...,im≤n

I{ω1(Xi1 , ..., Xim) < x}

Gn2(x) = 1
np

∑

1≤i1,...,ip≤n

I{ω2(Xi1 , ..., Xip) < x}.
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Alternatively, one can consider corresponding symmetrized U -empirical d.f.’s.
Therefore GOF tests can be constructed based on the difference between

functions Gn1 and Gn2. Mostly used in last few years (see e.g [18],[11],[8],
etc.) are those of integral type

In =
∫ ∞

−∞
(Gn1(x) − Gn2(x))dFn(x),

as well as Kolmogorov type statistic

Kn = sup
x

|Gn1(x) − Gn2(x)|.

Usually large values of statistics are significant. Under some additional condi-
tions both statistics are often free of some distribution parameter. For exam-
ple, in case of testing exponentiality sufficient condition is that ω1 and ω2 are
homogenuous functions of sample elements.

The group of independence based characterization contains the characteri-
zations of the following form.

Let X1, ..., Xm be i.i.d with d.f. F , ω1 : Rm 7→ R and ω2 : Rp 7→ R two
sample function such that p ≤ m. Then the following equivalence hold

ω1(X1, ..., Xm) and ω1(X1, ..., Xp) are independent

if and only if F belongs to some family F0.
Thus we may reformulate our null hypothesis into

H0 : H(x1, x2) = G1(x1)G(x2), for all x1, x2 ∈ R

where G1, G2 i H are marginal and joint d.f.’s of ω1 and ω2, respectively.
Natural choice for test statistics is

In =
∫

x1,x2

(Gn(x1, x2) − Hn(x1, x2))dFn(x1)dFn(x2)

Kn = sup
x1,x2

|Gn(x1, x2) − Hn(x1, x2)|,
(1)

where

Gn(x1, x2) = Gn1(x1)Gn2(x2)

Hn(x1, x2) = 1
nm

∑

1≤i1,...,im≤n

I{ω1(Xi1 , ..., Xim ) < x1, ω2(Xi1 , ..., Xip ) < x2}
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are suitable V -empirical d.f.’s. As previously, large values of proposed statis-
tics are significant. Those type of GOF tests have been firstly considered by
Milošević and Obradović in [10].

Notice that all integral type statistics are U -statistics, V -statistics or hy-
brid U -statistic. It turns up that in most cases their kernels are bounded
and non-degenerate. Hence, the limiting distributions of these statistics, ap-
propriately normalized, are normal. In case of Kolmogorov type statistics we
have supremum over some family of U -statistics, usually non-degenerate in the
sense of [10, 16]. Therefore their limiting distributions, appropriately normal-
ized, coincide with that of a supremum of of absolute value of some centered
Gaussian process (field). The critical values can be found using Monte Carlo
simulations.

3 Examples and discussion

Recently Milošević and Obradović proved the following characterization the-
orem (see [6]). The theorem generalizes results from [12] based on original
ideas from [2] and [19].

Let X1, . . . , Xm be a random sample from the distribution whose density
f(x) has the Maclaurin expansion for x > 0, and let X0 be a random variable
independent of the sample that follows the same distribution. Let k be a fixed
number such that 1 < k ≤ m. X is exponentially distributed if and only if one
of the following three statement holds:

X(k;m)
d=X(k−1;m−1) + 1

m
Xm (2)

X(k;m)
d=X(k−1;m) + 1

m − k + 1X0 (3)

X(k;m)
d= 1

m
X1 + 1

m − 1X2 + · · · + 1
m − k + 1Xk (4)

In the spirit of the previous section many GOF tests based on this character-
ization theorem can be constructed. Denote with I

(j)
k integral type, and with

K
(j)
k (j = 1, 2, 3) Kolmogorov type tests based on j-th part of the theorem for

m = k.
The tests I

(1)
3 and K

(1)
3 were proposed in [18], I

(2)
2 and K

(2)
2 in [7], I

(2)
3 and

K
(2)
3 in [9], while the test I

(3)
k , K

(3)
2 and K

(3)
3 were proposed in [5]. Notice that

the I
(1)
2 and K

(1)
2 coincide with I

(3)
2 and K

(3)
2 , respectively. We propose I

(1)
k

and I
(2)
k for arbitrary k and show that they are asymptotically equivalent to
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U -statistics with nondegenerate symmetric kernel. We derive their asymptotic
d.f.’s as well as large deviation functions.

We compare tests against some closed alternatives, namely Weibull, Make-
ham, Gamma, mixture of exponential distributions with negative weights
(EMNW(3)) and linear failure rate (LFR) distribution. Their densities can be
found e.g. in [9, 10]. The results are summarized in Tables 1 and 2.

Table 1: Bahadur efficiencies of integral type tests

j = 1 j = 2 j = 3 IE

Alt. e
(1)
2 e

(1)
3 max

k
e

(1)
k , k e

(2)
2 e

(2)
3 max

k
e

(2)
k , k e

(3)
3 max

k
e

(3)
k , k eE

Weibull .621 .649 (.649, 3) .750 .746 (.750, 2) .664 (.710, 8) .419
Makeham .488 .654 (.783, 6) .625 .772 (.872, 6) .573 (.876, 14) .714
Gamma .723 .638 (.723, 2) .796 .701 (.796, 2) .708 (.723, 2) .701

EMNW(3) .694 .835 (.835, 3) .844 .916 (.916, 3) .799 (.885, 6) .542
LFR .104 .206 (.613, 20) .208 .308 (.712, 23) .159 (.804, 88) .535

Table 2: Bahadur efficiencies of Kolmogorov type tests

j = 1 j = 2 j = 3 KE

Alt. e
(1)
2 e

(1)
3 e

(2)
2 e

(2)
3 e

(3)
3 eE

Weibull .092 .079 .277 .258 .152 .200
Makeham .125 .123 .342 .370 .216 .375
Gamma .093 .066 .267 .212 .138 .131

EMNW(3) .149 .122 .396 .364 .230 .334
LFR .052 .067 .155 .213 .106 .235

Now we pass to the example of GOF tests via independence based charac-
terization. Fisz in [3] proved following theorem.

Let X and Y be i.i.d. random variables with continuous distribution func-
tion F . Then min{X, Y } and |X − Y | are independent if and only if F (x) =
1 − e−λx, for some positive constant λ.

The Kolmogorov type test KE based on this characterization have been
proposed in [10]. Beside this test we propose the corresponding integral type
test IE of the form (1). We prove that the limiting distribution is normal and
found the large deviation function. Bahadur efficiencies of tests are shown in
Tables 1 and 2.

71



PPP B. Milošević

From the tables we can conclude that the ”order” of proposed tests differ
with alternative, the order of corresponding U -statistic and type of character-
ization and characterization itself. As far as Milošević-Obradović character-
ization based tests are considered, in case m = k it can be noticed that for
fixed k tests based on the second case are most efficient. However, it does not
necessary hold for some other choices of m and k and alternative distributions.

The results for tests based on Fisz’s characterizations are reasonably good in
comparison to considered tests based on Milošević-Obradović characterization.
It confirms that this rather new approach has a potential.

General conclusion is that the integral type tests are much more efficient
then the corresponding Kolmogorov ones. On the other hand the Kolmogorov
type tests are consistent against all alternatives, while the integral type tests
can be made consistent against almost all alternatives of practical purpose
considering their two-tailed versions.

Acknowledgements: The research was supported by MNTRS, Serbia,
Grant No. 174012.
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Confidence regions in Cox proportional hazards
model with measurement errors and

unbounded parameter set
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Cox proportional hazards model with measurement errors in covariates is
considered. It is the ubiquitous technique in biomedical data analysis. In
Kukush et al. (2011) and Chimisov & Kukush (2014) asymptotic properties
of a simultaneous estimator (λn;βn) for the baseline hazard rate λ(·) and the
regression parameter β were studied, at that the parameter set Θ = Θλ ×Θβ

was assumed bounded.
In Kukush & Chernova (2017) we dealt with the simultaneous estimator

(λn;βn) in the case, where the Θλ was unbounded from above and not separated
away from 0. The estimator was constructed in two steps: first we derived a
strongly consistent estimator and then modified it to provide its asymptotic
normality.

In this talk, we construct the confidence region for β. We reach our goal
in each of the three cases: (a) the measurement error is bounded, (b) it is
normally distributed, or (c) it is a shifted Poisson random variable. The censor
is assumed to have a continuous pdf. In future research we intend to elaborate
a method for heavy tailed error distributions and construct the confidence
interval for an integral functional of λ(·).

Keywords: asymptotic normality, confidence region, consistent estimator,
Cox proportional hazards model, measurement errors, simultaneous estimation
of baseline hazard rate and regression parameter.

1 Model formulation and estimation

Consider the Cox proportional hazards model (Cox, 1972), where a lifetime T
has the following intensity function

λ(t|X;λ, β) = λ(t) exp(βTX), t ≥ 0.
∗Corresponding author: chernovaoksan@gmail.com
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A covariate X is a given random vector distributed in Rm, β is a parameter
belonging to Θβ ⊂ Rm, and λ(·) ∈ Θλ ⊂ C[0, τ ], τ > 0, is a baseline hazard
function.

Instead of lifetime T one can usually observe a censored lifetime
Y := min{T,C} and the censorship indicator ∆ := I{T≤C}. The censor C is
distributed on [0, τ ]. Its survival function GC(u) = 1 − FC(u) is unknown,
while we know τ . The conditional pdf of T given X is

fT (t|X,λ, β) = λ(t|X;λ, β) exp
(
−
∫ t

0
λ(t|X;λ, β)ds

)
.

We consider an additive error model, i.e., instead of X a surrogate variable

W = X + U

is observed, where a random error U has known moment generating function
MU (z) := EezTU . A couple (T,X), censor C, and measurement error U are
stochastically independent.

Consider independent copies of the model (Xi, Ti, Ci, Yi,∆i, Ui,Wi),
i = 1, ..., n. Based on triples (Yi,∆i,Wi), i = 1, ..., n, we estimate true param-
eters β0 and λ0(t), t ∈ [0, τ ]. Our model is presented in Augustin (2004) where
baseline hazard function is assumed to belong to a parametric space, while we
consider λ0(·) from a closed convex subset of C[0, τ ]. Following the idea from
Augustin (2004), we use the objective function

Qcorn (λ, β) := 1
n

n∑

i=1
q(Yi,∆i,Wi;λ, β),

with

q(Y,∆,W ;λ, β) := ∆ · (log λ(Y ) + βTW )− exp(βTW )
MU (β)

∫ Y

0
λ(u)du.

Introduce the basic assumptions.

(i) Θλ ⊂ C[0, τ ] is the following closed convex set of nonnegative functions

Θλ := { f : [0, τ ]→ R | f(t) ≥ 0,∀t ∈ [0, τ ] and

|f(t)− f(s)| ≤ L|t− s|,∀t, s ∈ [0, τ ] },
where L > 0 is a fixed constant.

(ii) Θβ ⊂ Rm is a compact set.
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(iii) EU = 0 and for some constant ε > 0,

EeD‖U‖ <∞, where D := max
β∈Θβ

‖β‖+ ε.

(iv) EeD‖X‖ <∞, with D defined in (iii).

(v) P(C > τ) = 0 and for all ε > 0, P(C > τ − ε) > 0.

(vi) The covariance matrix of random vector X is positive definite.
Denote

Θ = Θλ ×Θβ . (1)

(vii) True parameters (λ0, β0) belong to Θ, which is given in (1), and moreover
λ0(t) > 0, t ∈ [0, τ ].

(viii) β0 is an interior point of Θβ .

(ix) λ0 ∈ Θε
λ for some ε > 0, where

Θε
λ := { f : [0, τ ]→ R | f(t) ≥ ε, ∀t ∈ [0, τ ],

|f(t)− f(s)| ≤ (L− ε)|t− s|,∀t, s ∈ [0, τ ] }.

(x) P(C > 0) = 1.

(xi) For some ε > 0, Ee2D‖U‖ <∞ where D is defined in (iii).

(xii) Ee2D‖X‖ <∞ where D is defined in (iii).

Definition 1. Fix a sequence {εn} of positive numbers, with εn ↓ 0, as n→∞.
The corrected estimator

(
λ̂

(1)
n , β̂

(1)
n

)
of (λ, β) is a Borel measurable function

of observations (Yi,∆i,Wi), i = 1, ..., n, with values in Θ and such that

Qcorn

(
λ̂(1)
n , β̂(1)

n

)
≥ sup

(λ,β)∈Θ
Qcorn (λ, β)− εn.

Theorem 3 from Kukush & Chernova (2017) proves that under conditions
(i) to (vii), the couple

(
λ̂

(1)
n , β̂

(1)
n

)
is a strongly consistent estimator of the

true parameters (λ0, β0).
Based on

(
λ̂

(1)
n , β̂

(1)
n

)
, we derive a modified estimator

(
λ̂

(2)
n , β̂

(2)
n

)
to be

consistent and asymptotically normal.
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Definition 2. The modified corrected estimator
(
λ̂

(2)
n , β̂

(2)
n

)
of (λ, β) is a

Borel measurable function of observations (Yi,∆i,Wi), i = 1, ..., n, with values
in Θ and such that

(
λ̂(2)
n , β̂(2)

n

)
=





arg max
{
Qcorn (λ, β) | (λ, β) ∈ Θ, µλ ≥ 1

2µλ̂(1)
n

}
, if µ

λ̂
(1)
n
> 0,(

λ̂
(1)
n , β̂

(1)
n

)
, otherwise,

with µλ := min
t∈[0,τ ]

λ(t).

Introduce notations:

a(t) = E[Xeβ
T
0 XGT (t|X)], b(t) = E[eβ

T
0 XGT (t|X)], Λ(t) =

∫ t

0
λ0(t)dt,

p(t) = E[XXT eβ
T
0 XGT (t|X)], T (t) = p(t)b(t)− a(t)aT (t), K(t) = λ0(t)

b(t) ,

M =
∫ τ

0
T (u)K(u)Gc(u)du.

For i = 1, 2, . . . , introduce random variables

ζi = −∆i · a(Yi)
b(Yi)

+ exp(βT0 Wi)
MU (β0)

∫ Yi

0
a(u)K(u)du+ ∂q

∂β
(Yi,∆i,Wi, β0, λ0),

with

∂q

∂β
(Y,∆,W ;λ, β) = ∆ ·W − MU (β)W − E(UeβTU )

MU (β)2 exp(βTW )
∫ Y

0
λ(u)du.

Let
Σβ = 4 · Cov(ζ1).

The following theorem from Kukush & Chernova (2017) states asymptotic
normality of β̂(2)

n .

Theorem 1. Assume conditions (i), (ii), and (v) – (xii). Then M is nonsin-
gular and

√
n(β̂(2)

n − β0) d−→ Nm(0,M−1ΣβM−1). (2)
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2 Confidence region for the regression parameter

Based on Theorem 1, we construct a confidence region for the regression
parameter. For t ∈ [0, τ ] and β ∈ Θβ , denote

B(W, t;λ, β) =
∞∑

k=0

(−1)k
k!MU ((k + 1)β)Λk(t)e(k+1)βTW ,

A(W, t;λ, β) =
∞∑

k=0

(−1)k
k!MU ((k + 1)β)Λk(t)

[
W − E[Ue(k+1)βTU ]

MU ((k + 1)β)

]
e(k+1)βTW ,

P (W, t;λ, β) =
∞∑

k=0

(−1)kΛk(t)
k!MU ((k + 1)β)

[
WWT e(k+1)βTW − 2E[Ue(k+1)βTU ]

MU ((k + 1)β)W
T e(k+1)βTW−

−
(

E[UUT e(k+1)βTU ]
MU ((k + 1)β) − 2E[Ue(k+1)βTU ]E[UT e(k+1)βTU ]

M2
U ((k + 1)β)

)
e(k+1)βTW

]
.

Theorem 2. Suppose that
∞∑

k=0

c̃k+1(β)
k! ekβ

T z <∞, z ∈ Rm, β ∈ Θβ ,

where c̃k+1(β) is substituted with each of the following expressions

E[||U ||e(k+1)βTU ]
MU ((k + 1)β) ,

E[||U ||2e(k+1)βTU ]
MU ((k + 1)β) ,

(
E[||U ||e(k+1)βTU ]
MU ((k + 1)β)

)2

.

Then for all t ∈ [0, τ ],

b̂(t) = 1
n

n∑

i=1
B(Wi, t; λ̂(2)

n , β̂(2)
n ),

â(t) = 1
n

n∑

i=1
A(Wi, t; λ̂(2)

n , β̂(2)
n ),

p̂(t) = 1
n

n∑

i=1
P (Wi, t; λ̂(2)

n , β̂(2)
n )

are consistent estimators of b(t), a(t) and p(t), respectively.
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We point out that the conditions of Theorem 2 are fulfilled in the next cases:
(a) U is bounded, (b) it is normally distributed, or (c) it is a shifted Poisson
random variable.

Denote

M̂ =
∫ Y(n)

0
T̂ (u)K̂(u)ĜC(u)du, (3)

where ĜC is the Kaplan-Meier estimator of the survival function of censor C,
and

Σ̂β = 4
n− 1

n∑

i=1
ζ̂iζ̂

T
i , with (4)

ζ̂i := −∆i · â(Yi)
b̂(Yi)

+ exp(β̂(2)T
n Wi)

MU (β̂(2)
n )

∫ Yi

0
â(u)K̂(u)du+ ∂q

∂β
(Yi,∆i,Wi; β̂(2)

n , λ̂(2)
n ).

Theorem 3. Assume the conditions of Theorem 2. The estimators M̂ and
Σ̂β defined in (3) and (4) are consistent estimators of matrices M and Σβ ,
respectively.

Given a confidence probability 1− α, 0 < α < 1/2, let
(
χ2
m

)
α

be the upper
α-quantile of the χ2

m distribution. Based on Theorem 2 and 3, we take as an
asymptotic confidence ellipsoid for β̂(2)

n the set

En :=
{
z ∈ Rm |

(
z − β̂(2)

n

)T (
M̂−1Σ̂βM̂−1

)−1 (
z − β̂(2)

n

)
≤ 1
n

(
χ2
m

)
α

}
.

It holds P(β0 ∈ En)→ 1− α as n→∞.

Acknowledgements: I would like to express my sincere gratitude to my
advisor Prof. Alexander Kukush for the support of my PhD research.
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E-optimal approximate block designs for
treatment-control comparisons
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We study E-optimal block designs for comparing a set of test treatments with a
control treatment. We provide the complete class of all E-optimal approximate
block designs and we show that these designs are characterized by simple linear
constraints. Employing the provided characterization, we obtain a class of
E-optimal exact block designs with unequal block sizes for comparing test
treatments with a control.

Keywords: Optimal design, Block design, Approximate design, Control
treatment, E-optimality

1 Introduction

Consider a blocking experiment for comparing a set of test treatments with
a control. As noted in [4], the experimental objective of comparing the test
treatments with a control arises, for instance, in screening experiments or in
experiments in which it is desired to assess the relative performance of new
test treatments with respect to the standard treatment. Such objective is also
quite natural for medical studies involving placebo (e.g., see [12], [11]).

Formally, we have

Yj = µ+ τi(j) + θk(j) + εj , j = 1, . . . , n,

where µ is the overall mean, τi is the effect of the i-th treatment (0 ≤ i ≤ v),
θk is the effect of the k-th block (1 ≤ k ≤ d), and the random errors ε1, . . . , εn

are uncorrelated, with zero mean and variance σ2 <∞. Treatment 0 denotes
the control, and the test treatments are numbered 1, . . . , v. By τ , we denote
the vector of treatment effects and by θ the vector of block effects. The
assumed objective of the experiment is to estimate the comparisons of the
test treatments with the control τi − τ0 (1 ≤ i ≤ v) or comparisons with the
control in short. Let Q := (−1v, Iv)T , where 1v is the column vector of ones of

∗Corresponding author: samuel.rosa@fmph.uniba.sk
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length v and Iv is the identity matrix. Then, the experimental objective can
be expressed as the estimation of QT τ .

There is a large amount of literature on optimal exact designs for test
treatment-control comparisons, mostly considering the A- and MV -optimality
criteria; for a survey, see [4] or [5]. The E-optimality criterion also received
some attention; see [6], [8], [7].

In this paper, we provide the class of all E-optimal approximate block
designs for comparisons with the control. Based on the obtained class of
optimal approximate designs, we provide a class of E-optimal exact designs,
which extends the known results on E-optimality to the case of unequal block
sizes.

1.1 Experimental design

An exact design ξe determines in each block the numbers of trials that are
performed with the various treatments. Thus, ξe can be expressed as a function
ξe : {0, . . . , v} × {1, . . . , d} → {0, 1, 2, . . . , n} such that

∑
i,k ξe(i, k) = n. The

value ξe(i, k) determines the number of trials performed with treatment i in
block k. Suppose that the blocks 1, . . . , d have pre-specified non-zero sizes
m1, . . . ,md. We denote the class of all block designs for v + 1 treatments and
d blocks of sizes m = (m1, . . . ,md)T by D(v, d,m).

An approximate design (or simply a design) is a function ξ : {0, . . . , v} ×
{1, . . . , d} → [0, 1], such that

∑
i,k ξ(i, k) = 1. The value ξ(i, k) represents the

proportion of all trials that are performed with treatment i in block k. For a
given design ξ, let us denote the design matrix X(ξ) := (ξ(i, k))i,k, let r(ξ) :=
X(ξ)1d be the vector of total treatment proportions and let s(ξ) := XT (ξ)1v

be the vector of relative block sizes. Because we consider non-zero block sizes,
we always have s(ξ) > 0.

The information matrix of a design ξ for estimating all pairwise compar-
isons of treatments is M(ξ) := diag(r(ξ)) − X(ξ)diag−1(s(ξ))XT (ξ), where
diag−1(s(ξ)) := diag(s−1

1 (ξ), . . . , s−1
d (ξ)). The parameter system QT τ is said

to be estimable under an approximate design ξ if C(Q) ⊆ C(M(ξ)), where C
denotes the column space. In such a case, we say that ξ is feasible and we
have rank(M(ξ)) = v. The information matrix N(ξ) := (QTM−(ξ)Q)−1 of a
feasible design ξ for estimating QT τ is obtained by deleting the first row and
column of M(ξ) (see [1], [3]). Let us partition X(ξ) as XT (ξ) = (z(ξ), ZT (ξ)),
where z(ξ) is a d× 1 vector; i.e., Z(ξ) = (ξ(i, k))i>0,k. Then, the information
matrix for comparing the test treatments with the control is

N(ξ) = diag(r1(ξ), . . . , rv(ξ))− Z(ξ)diag−1(s(ξ))ZT (ξ). (1)

Note that N(ξ) is proportional to the inverse of the covariance matrix of the
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least squares estimator of τ1− τ0, . . . , τv − τ0. A design is said to be Ψ-optimal
if it minimizes Ψ(N(ξ)) for some function Ψ.

We say that a design ξ that satisfies ξ(i, k) = risk is a product design of r
and s. We denote such design as ξ = r ⊗ s.

2 E-optimality

We denote the largest (smallest) eigenvalue of a symmetric matrix A by λmax(A)
(λmin(A)). A design is E-optimal if it minimizes λmax(N−1(ξ)) or, equivalently,
if it maximizes λmin(N(ξ)). Such a design minimizes the maximum variance for
the linear combinations

∑
i>0 xiτi − (

∑
i>0 xi)τ0 over all normalized x ∈ Rv.

In the following theorem, we provide the complete characterization of E-
optimal block designs for comparing the test treatments with the control: an
approximate design ξ∗ is E-optimal for the comparisons with the control if
and only if

(i) in each block, ξ∗ assigns one half of the trials to the control and

(ii) ξ∗ is equireplicated in the test treatments.
Theorem 1. An approximate block design ξ is E-optimal for the comparisons
with the control if and only if it satisfies

ξ(0, k) = sk(ξ)
2 and r1(ξ) = . . . = rv(ξ) = 1

2v . (2)

Proof. Let ξ be E-optimal. From Theorems 1 and 6 of [10] it follows that an
E-optimal design must satisfy r0(ξ) = 1/2 and ri(ξ) = 1/(2v) for i > 0, and
that the optimal value of λmin(N(ξ)) is λ∗min = 1/(4v). Moreover,

λmin(N(ξ)) = min
xT x=1

xTN(ξ)x ≤ 1
v

1T
v N(ξ)1v

= 1
v

(∑

i>0
ri(ξ)−

d∑

k=1

1
sk(ξ) (

∑

i>0
ξ(i, k))2

)

= 1
2v −

1
v

d∑

k=1

(qk)2

sk(ξ) ,

where qk :=
∑

i>0 ξ(i, k) (1 ≤ k ≤ d). Because
∑

k ξ(0, k) = 1/2, we have∑
k qk = 1/2. Therefore, for fixed s(ξ), the following holds (which can be seen

by finding the minimum of the function on the left-hand side):
d∑

k=1

q2
k

sk(ξ) ≥
d∑

k=1

(sk(ξ)/2)2

sk(ξ) = 1
4 ,
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i\k 1 2 3 4
0 1/6 1/6 1/12 1/12
1 1/6 1/12 0 0
2 0 1/12 1/12 1/12

Table 1: E-optimal approximate block design ξ for comparing two test
treatments with the control in 4 blocks of relative sizes s =
(1/3, 1/3, 1/6, 1/6)T . The value on position (i, k) represents ξ(i, k).

using the fact that
∑

k sk(ξ) = 1. The inequality is attained as equality if and
only if qk = sk(ξ)/2 for all k = 1, . . . , d. Hence,

λmin(N(ξ)) ≤ 1
2v −

1
4v = 1

4v = λ∗min. (3)

Since ξ is E-optimal, the inequality is attained as equality, and thus ξ(1, k) =
sk(ξ)/2 for all k = 1, . . . , d.

For the converse part, let ξ satisfy (2). Then, ξ is connected (see [2])
and therefore feasible. Moreover, ZT (ξ)1v = s(ξ)/2 and Z(ξ)1d = (2v)−11v.
Therefore,

N(ξ)1v = 1
2v 1v −

1
2Z(ξ)diag−1(s(ξ))s(ξ) = 1

2v 1v −
1
2Z(ξ)1d.

Thus, N(ξ)1v = [1/(2v) − 1/(4v)]1v = (4v)−11v. That is, λ∗ = 1/(4v) is an
eigenvalue of N(ξ) corresponding to the eigenvector 1v. Therefore, it suffices
to prove that λ∗ is the smallest eigenvalue of N(ξ).

Let N(ξ) = (nij)i,j . We note that nij ≤ 0 for i 6= j. Using an argument
similar to that in Theorem 3.1 of [6], let x be an eigenvector of N(ξ). Let
us denote the eigenvalue that corresponds to x as λ. By multiplying x by an
appropriate constant, we obtain maxj |xj | = 1. Thus, xj ≤ 1 for all 1 ≤ j ≤ v.
Let i be the index that satisfies |xi| = 1. Then, by multiplying x by ±1, we
obtain xi = 1. Now, we can write

(N(ξ)x)i = niixi +
∑

j 6=i

nijxj ≥ nii +
∑

j 6=i

nij = (N(ξ)1v)i,

where the inequality follows from nij ≤ 0 for j 6= i, and xj ≤ 1 for 1 ≤ j ≤ v.
Because (N(ξ)x)i = λxi = λ and (N(ξ)1v)i = λ∗, we have λ∗ ≤ λ for any
eigenvalue λ.

Table 1 gives an E-optimal block design provided by Theorem 1. Theorem 1
is a generalization of Theorems 1 and 2 of [11], where E-optimal block designs
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i\k 1 2 3
0 1 1 2
1 1 0 1
2 0 1 1

Table 2: Exact block design ξe for given block sizes m = (2, 2, 4)T , which is
E-optimal for comparing two test treatments with the control. The
value on position (i, k) represents ξe(i, k).

for comparisons with the placebo (control) for specific experimental settings
are provided.

3 Exact Designs

For a strictly convex criterion, the only optimal approximate block designs are
product designs with optimal treatment proportions (see [10]). For example,
for given relative block sizes s, the product design ξ∗ = r∗ ⊗ s, where

r∗0 =
√
v − 1
v − 1 , r∗1 = . . . = r∗v =

√
v − 1√
v(v − 1) ,

is the single A-optimal, as well as the single MV -optimal design, see [3], [10].
It is rather difficult to obtain optimal or efficient exact designs from such
designs, e.g., by rounding methods (see Chapter 12 of [9]).

However, since E-optimality lacks strict convexity, the class of E-optimal
designs is richer, and efficient exact designs can be obtained by the rounding
methods more easily. Moreover, this allows for a simple construction of optimal
exact designs for a wide range of experimental settings. We easily obtain the
following theorem that provides a class of E-optimal exact designs for unequal
block sizes.
Theorem 2. If there exists an exact design ξ∗e ∈ D(v, d,m) that satisfies
ξ∗e (0, k) = mk/2, 1 ≤ k ≤ d, and ξ∗e is equireplicated in the test treatments,
then ξ∗e is E-optimal for test treatment-control comparisons in D(v, d,m).
Proof. The approximate version ξ∗e/n of ξ∗e is in fact an E-optimal approximate
design, because it satisfies the conditions of Theorem 1. Then, ξe is clearly an
E-optimal exact design, because the class of approximate designs is a relaxation
of the class of the “normalized” exact designs ξe/n.

Theorem 2 generalizes Theorem 3.1 of [6], which provides E-optimal block
designs for blocks of equal size, to blocks of unequal sizes. An E-optimal design
given by Theorem 2 is provided in Table 2.
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In contrast to the low dimensional case, variable selection under the assumption
of sparsity in high dimensional models is strongly influenced by the effects of
false positives. The effects of false positives are tempered by combining the
variable selection with a shrinkage estimator, such as in the lasso, where the
selection is realized by minimizing the sum of squared residuals regularized
by an `1 norm of the selected variables. Optimal variable selection is then
equivalent to finding the best balance between closeness of fit and regularity, i.e.,
to optimization of the regularization parameter with respect to an information
criterion such as Mallows’s Cp or AIC. For use in this optimization procedure,
the lasso regularization is found to be too tolerant towards false positives,
leading to a considerable overestimation of the model size. Using an `0
regularization instead requires careful consideration of the false positives, as
they have a major impact on the optimal regularization parameter. As the
framework of the classical linear model has been analysed in previous work,
the current paper concentrates on structured models and, more specifically, on
grouped variables. Although the imposed structure in the selected models can
be understood to somehow reduce the effect of false positives, we observe a
qualitatively similar behavior as in the unstructured linear model.

Keywords: variable selection, structured data, sparsity, lasso, Mallows’s Cp.

1 Introduction

Recent literature has had considerable attention for the uncertainties that
follow from the process of model or variable selection. On one hand, it has
been realized that the selection of variables should look forward, focussing on
the application in which the selected model will be used, so as not to waste
degrees of freedom on variables that are of little importance in the application
[2]. On the other hand, post-model selection inference is looking backwards,
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investigating the effects of the model selection uncertainty on the inference in
the selected model [7, 6].

The contribution of this paper is, however, situated on the effect of the
uncertainty on the variable selection process itself. The numerous insignificant
components in sparse, high dimensional models lead to false positives being
a main source of uncertainty. Well established methods for high dimensional
variable selection are explicitly based on controlling the false discovery rate [1]
or even the absolute number of false positives [4]. The methods in this class
tend to be minimax oriented, rather than data driven. Another way to deal
with false positives is to reduce the impact of a false positive by using shrinkage
selection. This is realized, for instance, in the lasso, where the variable selection
objective is formulated as a trade off between the sum of the residual squares
and the `1 norm of the selected variables. The `1 norm, i.e., the sum of the
absolute values of the selected variables, should be seen as an alternative for
the `0 norm, measuring the size of the selected set. Finding the minimum
sum of squared residuals, regularized by the number of selected variables, is a
combinatorial problem, and therefore intractable from the computational point
of view. The `1 alternative leads to a quadratic programming problem whose
solution is still a proper variable selection, as it contains many exact zeros.
The nonzeros, however, are not found by least squares projection, but rather
by shrunk versions of the least squares estimators. The intuition behind this
is that dubious parameters can be included into the model, but with a value
close to zero. If such a parameter happens to be a false positive, its inclusion
into the model has a limited impact on any inference in that model. With
a much faster algorithm than its `0 counterpart, the `1 regularized variable
selection, equiped with an appropriate choice of the regularization parameter,
is able to find a model with a similar degree of sparsity [3].

Existing variable selection consistency results do not consider the case where
the regularization parameter has to be optimized in a data dependent way,
using an information criterion. While for fixed or minimax values of the
parameter, `1 regularization provides a valid alternative for `0, the equivalence
holds no longer through the optimization process. This is explained by the `1
tolerance towards false positives: since the `1 procedure reduces the impact of
a false positive, the optimal balance between the sum of the residual squares
and the regularization shifts towards larger models.

In searching for the optimal regularization, `1 can still be used to actually
come up with a selection, but for the evaluation of the quality of the selection,
it makes a difference whether the estimation within the selection keeps the
shrinkage of the `1 regularization. If the shrinkage estimator is replaced by a
least squares projection, then the optimal balance should shift back towards
smaller models. It is obvious that the estimation of the `0 balance requires
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a different expression of the information criterion. The compensation for the
difference between `0 and `1 regularization has been described as a “mirror”
effect [5], further explained in Section 2. It has been explored in the context
of unstructured selection in a linear model. In this paper, we extend the scope
to structured selection, presented in Section 3. The actual contribution of the
paper then follows in Section 4.

2 Mirror effect in unstructured selection in linear models

Consider the sparse linear model

Y = Kβ + ε,

where the design matrix K has size n × m with n smaller than m, and
the number of nonzeros in β is unknown but smaller than n. Also, let
As ⊂ {1, 2, . . . ,m} be a selection with s nonzeros, obtained by a procedure,
S(Y, s), that selects among all possible subsets of size s. As an example,
S(Y, s) could be an implementation of the lasso, finetuned to have s nonzeros
as result. Furthermore, let KAs

denote the n× s submatrix consisting of the
s columns in K corresponding to the selection. We investigate the quality of
the least squares projection β̂As

= (KT
As

KAs)−1KT
As

Y, assuming that KAs

is non-singular. As a measure for quality, we adopt the prediction error, but
a similar discussion would hold for any distance between selected and true
model. The prediction error is defined as PE(β̂As

), where

PE(β̂A) = 1
n
E
(
‖Kβ −KAβ̂A‖2

2

)
. (1)

Let Aos be the selection provided by an oracle observing Kβ without noise, using
the same procedure, i.e., Aos = S(Kβ, s). Then the least squares projection,
β̂Ao

s
= (KT

Ao
s
KAo

s
)−1KT

Ao
s
Y, depends on the observations through Y, but not

through Aos. The prediction error PE(β̂Ao
s
) is estimated unbiasedly by ∆p(Aos),

where ∆p(A) is a non studentized version of Mallows’s Cp criterion,

∆p(β̂A) = 1
n
‖Y−KAβ̂A‖2

2 + 2|A|
n

σ2 − σ2. (2)

The selection As = S(Y, s), however, depends on Y. The expectation of
(2) will not be equal to PE(β̂As

). As the second and third term of (2) are
constants, this is explained by the behavior of ‖Y−KAs

β̂As
‖2

2. In the case
where the procedure consists of minimizing (2) on all selections of size s, i.e.,
S(Y, s) = arg min|A|=s ∆p(A), the deviation of the information criterion from
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the error curve can be described as a reflection with respect to the oracular
mirror PE(β̂Ao

s
) = E∆p(β̂Ao

s
) [5], meaning that

PE(β̂As
)− PE(β̂Ao

s
) ≈ PE(β̂Ao

s
)− E∆p(β̂As

) (3)

An intuitive explanation follows by assuming that s is large enough to catch
all really important variables into both As and Aos. Once the important
variables are in the model, the remainder of the s variables are chosen to
further minimize the distance between KAs

β̂As
and Y. Among the remaining

candidates, these variables perform best in fitting the signal Kβ with the errors,
and thus perform worst in staying close to signal without the errors. The
contrast between the better-than-average appearance E∆p(β̂As

) and worse-
than-average true prediction error follows from the fact that the optimisation
over random variables ∆p(β̂A) affects the statistics of the selected values. The
oracle curve PE(β̂Ao

s
) acts as mirror, because the selection Aos does not depend

on Y, thus leaving the statistics of the selected values unchanged.

3 Structured selection with grouped variables

The lasso, in addition to providing us with a selection As considering an
appropriate regularisation parameter, can be extented or used to take into
account structured models such as grouped variables [9], graphical models
[10, 8] or even hierarchical information [11]. When the variables are under the
hypothesis to have a natural group structure, the coefficients within a group
should all be nonzero (or zero).

In its Lagrangian form, the lasso problem of a linear model is expressed as

min
β

1
2‖Y−Kβ‖2

2 + λ‖β‖1 (4)

with λ being a regularisation parameter which can be adjusted to obtain the
desired degree of sparsity. When K is orthogonal, the solution of (4) is simply
a soft-thresholded version of the least-squares estimate whose threshold is
λ. For the remainder of this paper, we consider the signal-plus-noise model
Y = β + ε where m = n and K = In. Then the best s term unstructured
selection, mesured by the Cp-value, consists of the s largest elements from Y.

For group selection, the penalty in (4) can be modified to become the sum
of the `2 norms of each group. This is known as group lasso and it aims
to optimise the following expression, for the signal-plus-noise model with ng
groups,

min
β

1
2‖Y− β‖

2
2 + λ

ng∑

j=1
‖βj‖2 (5)
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where βj ∈ Rwj forms a group of wj coefficients from β and
∑ng

j=1 wj = n.
The solution of (5) is again a soft-thresholded version of Y, although the
threshold has the form λ|Yi|/‖Yj‖2 for observation i within group j. Hence
without shrinkage, the best sg group selection contains the values of Y from
the sg groups of observations whose `2 norms are the largest.

4 Mirror effect in group selection and discussion

In our simulation, 250 groups containing 20 coefficients βj are generated so
that β = (βj)j=1,...,250 is a n-dimensional vector with n = 5000. Within group
j, the βj have the same probability pj of being set to 0; for each j, a different
value pj is randomly drawn from the set P = (0.95, 0.80, 0.50, 0.05, 0.00)
with respective probability Q = (0.02, 0.02, 0.01, 0.20, 0.75). The expected
proportion of nonzeros is then 〈P,Q〉 = 1/20 for the whole data β. The
nonzeros β are then distributed according to the zero inflated Laplace model
fβ|β 6=0(β) = (a/2) exp(−a|β|) where a = 1/5. The observations are Y = β+ ε,
where ε is a n-vector of independent, standard normal errors. Estimates β̂ are
calculated considering four configurations: groups of size 20 (initial setting), 5
and 2 (subgroups built from the original groups) and 1 (unstructured selection).
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Figure 1: Mirror effect and group size impact.

Figure 1 plots the prediction error and Mallows’s Cp as a function of the
selection size for unstructured and 20-5-2-grouped variable selection. In each
case, we observe that the PE and Cp curves are reflexion of each other with
respect to a mirror curve. It is interesting to note that, for the signal-plus-noise
model, the unstructured and group mirror curves coincide once the PE and
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Cp curves are drifting apart. Also, it seems the bigger the group size gets, the
closer the corresponding PE and Cp curves are. Hence when the group size
grows, the mirror effect becomes smaller.
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We define heavy-tailed fractional reciprocal gamma and Fisher-Snedecor diffu-
sions by a non-Markovian time change in the corresponding Pearson diffusions.
We illustrate known theoretical results regarding these fractional diffusions via
simulations.
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1 Introduction

Every continuous distribution with density satisfying the so called Pearson
equation

p′(x)
p(x) = (a1 − 2b2)x+ (a0 − b1)

b2x2 + b1x+ b0
(1)

is called a Pearson distribution (see [8]). The family of Pearson distributions
consists of six parametric subfamilies: normal, gamma, beta, Fisher-Snedecor,
reciprocal gamma and Student distributions.

Strong solution of SDE

dXt = µ(Xt)dt+ σ(Xt)dWt, t ≥ 0, (2)

where

µ(x) = a0 + a1x, σ(x) =
√

2b(x) =
√

2(b2x2 + b1x+ b0)

is called the Pearson diffusion. They are called after Pearson since their
stationary distributions belong to the Pearson family. Usually, it is convenient
to re-parametrize drift and squared diffusion:

µ(x) = −θ(x− µ), σ2(x) = 2θk(B2x
2 +B1x+B0),

∗Corresponding author: ipapic@mathos.hr
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where µ ∈ R is the stationary mean depending on coefficients of the Pearson
equation (1), θ > 0 is the scaling of time determining the speed of the mean
reversion, and k is a positive constant. Note that we need σ2(x) > 0 on the
diffusion state space (l, L).

Pearson diffusions could be categorized into six subfamilies, according to the
degree of the polynomial b(x) and, in the quadratic case b(x) = b2x

2 + b1x+ b0,
according to the sign of its leading coefficient b2 and the sign of its discriminant
∆:

• constant b(x) - Ornstein-Uhlenbeck (OU) process with normal stationary
distribution,

• linear b(x) - Cox-Ingersol-Ross (CIR) process with gamma stationary
distribution,

• quadratic b(x) with b2 < 0 - Jacobi diffusion with beta stationary distri-
bution,

• quadratic b(x) with b2 > 0 and ∆ > 0 - Fisher-Snedecor (FS) diffusion
with the Fisher-Snedecor stationary distribution,

• quadratic b(x) with b2 > 0 and ∆ = 0 - reciprocal gamma (RG) diffusion
with reciprocal gamma stationary distribution,

• quadratic b(x) with b2 > 0 and ∆ < 0 - Student diffusion with the
Student stationary distribution.

2 Fractional diffusions

The subject of our interest are fractional derivatives of order 0 < α < 1. We
define Caputo fractional derivative of order 0 < α < 1 as

dαf(x)
dxα

= 1
Γ(1− α)

∞∫

0

d

dx
f(x− y)y−α dy,

or equivalently for absolutely continuous functions as

dαf(x)
dxα

= 1
Γ(1− α)

x∫

0

(x− y)−αf ′(y) dy.

Interesting and detailed read regarding fractional derivatives one can find in
[7, Chapter 2].
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By (X(t), t ≥ 0) denote the Pearson diffusion solving (2). Introduce (Dt, t ≥
0), the standard stable subordinator with index 0 < α < 1, which is independent
of the process (X(t), t ≥ 0). Dt is a homogeneous Lèvy process with the
Laplace transform

E[e−sDt ] = exp{−tsα}.

Its inverse process
Et = inf{x > 0 : Dx > t}

is non-Markovian, non-decreasing, and for every t random variable Et has a
density, which will be denoted by ft(·). The Laplace transform of this density
is (see e.g., [9])

E[e−sEt ] =
∫ ∞

0
e−sxft(x)dx = Eα(−stα), (3)

where

Eα(z) :=
∞∑

j=0

(z)j
Γ(1 + αj)

is the Mittag-Leffler function (see, for example [10]).
Notice that for α = 1

Eα(z) = ez,

i.e, Mittag-Leffler reduces to the exponential function.
Now, define the fractional Pearson diffusion (Xα(t), t ≥ 0) as a composition

of the Pearson diffusion and inverse of the stable subordinator, i.e.

Xα(t) = X(Et), t ≥ 0. (4)

We emphasize that (Xα(t), t ≥ 0) is a non-Markovian process and define its
transition density pα(x, t; y) as

P (Xα(t) ∈ B|Xα(0) = y) =
∫

B

pα(x, t; y)dx (5)

for any Borel subset B of (l, L).
Using results from [1] one can show that if the non-fractional Pearson diffu-
sion satisfy SDE (2) with inital condition X(0) = 0, then the corresponding
fractional Pearson diffusion defined with (4) satisfy SDE

dXα(t) = µ(Xα(t))dEt + σ(Xα(t))dBEt (6)
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with initial condition Xα(0) = 0.
Integral form of this SDE is

Xα(t) = X(Et) =
Et∫

0

(a0 + a1X(s)) ds+
Et∫

0

√
2(b0 + b1X(s) + b2(X(s))2)dB(s).

For details we refer to [1] and [4].
Non-heavy-tailed fractional Pearson diffusions (fractional Ornstein-Uhlenbeck
(OU) , Cox-Ingersol-Ross (CIR) and Jacobi diffusion) are studied in detail in
[3], while heavy-tailed fractional Pearson diffusions (fractional Fisher-Snedecor
and reciprocal gamma diffusion) are studied in the recent paper [4]. Fractional
Student diffusion have not yet been studied in detail since the nature behind the
process (infinitesimal generator and spectrum) is much more complicated then
in the other five cases. However, regarding non-fractional Student diffusion
one can find some results in [5].
In this paper, we present simulation results regarding fractional Fisher-Snedecor
and fractional reciprocal gamma diffusions, which illustrates theoretical results
obtained in [4]. Therefore, we begin by stating the necessary theoretical results.

3 Fractional reciprocal gamma diffusion

The reciprocal gamma diffusion satisfies the SDE

dXt = −θ
(
Xt −

γ

β − 1

)
dt+

√
2θ

β − 1X
2
t dWt, t ≥ 0,

with θ > 0 and has invariant density

rg(x) = γβ

Γ(β) x
−β−1e−

γ
x I〈0,∞〉(x) (7)

with parameters γ > 0 and β > 1, where the latter requirement ensures the
existence of the stationary mean γ/(β − 1).

Theorem 1. The transition density of the fractional RG diffusion is given by

pα(x, t;x0) =
b β2 c∑

n=0
rg(x)Bn(x)Bn(x0) Eα(−λntα)

+ rg(x)
4π

∞∫

θβ2
4(β−1)

Eα(−λtα) b(λ)ψ(x,−λ)ψ(x0,−λ) dλ,
(8)
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where Bn are normalized Bessel polynomials, λn are their eigenvalues, b(λ) is
a constant depending on λ and ψ is the solution of the corresponding Sturm-
Liouville equation.

For proof and details see [4].

4 Fractional Fisher-Snedecor diffusion

The Fisher-Snedecor diffusion satisfies the SDE

dXt = −θ
(
Xt −

β

β − 2

)
dt+

√
4θ

γ(β − 2)Xt(γXt + β) dWt, t ≥ 0

with θ > 0 and has invariant density

fs(x) = β
β
2

B
(
γ
2 ,

β
2

) (γx) γ2−1

(γx+ β) γ2 + β
2
γ I〈0,∞〉(x) (9)

with parameters γ > 0 and β > 2, where the latter requirement ensures the
existence of the stationary mean β/(β − 2).

Theorem 2. The transition density of fractional FS diffusion is given by

pα(x, t;x0) =
b β4 c∑

n=0
fs(x)Fn(x0)Fn(x) Eα(−λntα)

+ fs(x)
π

∞∫

θβ2
8(β−2)

Eα(−λtα) a(λ) f1(x0,−λ) f1(x,−λ) dλ,
(10)

where Fn are normalized Fisher-Snedecor polynomials, λn are their eigenvalues,
a(λ) is a constant depending on λ and f1 is the solution of the corresponding
Sturm-Liouville equation.

For proof and details see [4].

5 Stationary distributions of the fractional reciprocal
gamma and Fisher-Snedecor diffusions

By pα(x, t) denote the density of Xα(t), by p(x, t) the density of X(t) and let
f be the density of initial state Xα(0). Now, by the definition of transition
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density it follows
pα(x, t) =

∫ ∞

0
pα(x, t; y)f(y)dy.

If we assume that the initial distribution is concentrated in one point, i.e. if
f(y) = δ(x0) we obtain

pα(x, t) = pα(x, t;x0)
and since for fractional FS and RG diffusion, transition densities pα(x, t;x0)
are given via (8) and (10), one can show that

pα(x, t)→ m(x) as t→∞, (11)

where m is FS stationary distribution in fractional FS diffusion case, and RG
stationary distribution in fractional RG case.
In fact, even without the assumption on the concentrated initial state, one can
prove the statement, for details we refer to [4].
Also, obsverve that

pα(x, t)→ p(x, t) as α→ 1. (12)

6 Correlation structure of fractional Pearson diffusions

Stationary Pearson diffusion X(t) such that the stationary distribution has
finite second moment has the correlation function given by

Corr [X(t), X(s)] = exp(−θ|t− s|), (13)

where θ is the autocorrelation parameter. Since the autocorrelation function
(13) falls off exponentially, Pearson diffusions exhibit short-range dependence.

We say that fractional Pearson diffusion Xα(t) defined by (4) is in the steady
state if it starts from its invariant distribution with the density m. Then the
autocorrelation function of Xα(t) = X(Et) is given by

Corr [Xα(t), Xα(s)] = Eα(−θtα) + θαtα

Γ(1 + α)

s/t∫

0

Eα(−θtα(1− z)α)
z1−α dz (14)

for t ≥ s > 0. The tehnique to prove this fact can be found in [2].
Observe that (14) implies the long-range dependence of the fractional diffusion
Xα(t), since the autocorrelation function (14) falls off like power law with
exponent α ∈ (0, 1).
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7 Simulation results

Simulation results are based on the algorithm introduced in [6]. Basically, idea
is to seperately simulate trajectory of the inverse of the stable subordinator and
trajectory of the non-fractional diffusion. Afterwards, by linear interpolation
one gets trajectory of the fractional diffusion. This algorithm perfectly fits
our setting, since we define fractional Pearson diffusion as a composition of
the non-fractional Pearson diffusion and the inverse of the stable subordinator
(which are assume to be independent).
Trajectories of such simulated fractional RG and FS diffusion are given in
Figure 1, where the difference between non-fractional and fractional diffusions
can be clearly seen. Unlike non-fractional diffusions, fractional diffusions have
long resting periods of time due to change of time via inverse of the stable
subordinator Et.
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Figure 1: Sample paths of the fractional/non-fractional RG and FS diffusions
with parameters γ = 10, β = 20, θ = 0.01 and α = 0.7, based on
10000 points with inital state X0 = 0.4.

Next, we illustrate that density of fractional diffusion approach the stationary
density as explained in Section 5. We simulated 1000 trajectories of the
fractional RG diffusion and estimated densities at times t = 0.02, t = 0.2 and
t = 2, see figure 2. Comparing densities pα(x, t) and p(x, t), we clearly observe
slower approaching to the stationary density in fractional case. Autocorrelation
function (14) of the fractional diffusion, in comparison with the autocorrelation
function (13) of the non-fractional diffusion which decays exponentially fast,
decays much slower, i.e. in polynomial rate. This is illustrated in Figure 3.
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Figure 2: Estimated densities pα(x, t) and p(x, t) for reciprocal gamma diffusion
with parameters γ = 10, β = 20, θ = 0.01 and α = 0.7, based on
1000 trajectories with inital state X0 = 0.4.
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Figure 3: Estimated autocorrelation function of fractional/non fractional RG
and FS diffusions with parameters γ = 10, β = 20, θ = 0.01 and
α = 0.7, based on 10000 points with inital state X0 = 0.4.
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Copula based BINAR models with applications
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In this paper we study the problem of modelling the integer-valued vector
observations. We consider the BINAR(1) models defined via copula-joint
innovations. We review different parameter estimation methods and analyse
estimation methods of the copula dependence parameter. We also examine the
case where seasonality is present in integer-valued data and suggest a method
of deseasonalizing them. Finally, an empirical application is carried out.

Keywords: Count data, BINAR, Poisson, Negative binomial distribution,
Copula.

1 Introduction

Different financial institutions that issue loans do so following company-specific
(and/or country-defined) rules which act as a safeguard so that loans are not
issued to people who are known to be insolvent. The adequacy of a firms
rules for issuing loans can be analysed by modelling the dependence between
the number of loans which have defaulted and number of loans that have not
defaulted via copulas.

The advantage of such approach is that copulas allow to model the marginal
distributions (possibly from different distribution families) and their depen-
dence structure (which is described via a copula) separately. Because of this
feature, copulas were applied to many different fields (for some examples of
copula applications see [2], [4], [5] and [6]). While these studies were carried
out for continuous data, there is less developed literature on discrete models
created with copulas: [7] discussed the differences and challenges of using
copulas for discrete data compared to continuous data. By using bivariate
integer-valued autoregressive models (BINAR) it is possible to account for
both the discreteness and autocorrelation of the data. Furthermore, copulas
can be used to model the dependence of innovations in the BINAR(1) models:
[9] used the Frank copula and normal copula to model the dependence of the
innovations of the BINAR(1) model.

∗Corresponding author: andrius.buteikis@mif.vu.lt
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In this short paper we analyse different BINAR(1) model with copula-
joint innovations parameter estimation methods. We also discuss some issues
concerning the seasonality in integer-valued data and suggest a method of de-
seasonalizing them. Finally, in order to analyse the presence of autocorrelation
and copula dependence in loan data, an empirical application is carried out on
weekly loan data. Estimation method comparisons and additional numerical
results can be found in [3].

The paper is organized as follows. Section 2 presents the BINAR(1) process,
Section 3 presents the definition of copulas. Section 4 compares different
estimation methods for the BINAR(1) model. Seasonal adjustment of integer-
valued data is presented in Section 5. In Section 6 an empirical application
is carried out using different combinations of copula functions and marginal
distribution functions. Conclusions are presented in Section 7.

2 The bivariate INAR(1) process

The BINAR(1) process was introduced in [11]. In this section we will provide
the definition of the BINAR(1) model.

Definition 1. Let Rt = [R1,t, R2,t]′, t ∈ Z be a sequence of independent
identically distributed (i.i.d.) non-negative integer-valued bivariate random
variables. A bivariate integer-valued autoregressive process of order 1 (BI-
NAR(1)), Xt = [X1,t, X2,t]′, t ∈ Z, is defined as:

Xt = A ◦Xt−1 + Rt =
[
α1 0
0 α2

]
◦
[
X1,t−1
X2,t−1

]
+
[
R1,t
R2,t

]
, t ∈ Z, (1)

where αj ∈ [0, 1), j = 1, 2, and the symbol ’◦’ is the thinning operator which also
acts as the matrix multiplication. We have that αj ◦Xj,t−1 :=

∑Xj,t−1
i=1 Yj,t,i

and Yj,t,1, Yj,t,2, . . . is a sequence of i.i.d. Bernoulli random variables with
P(Yj,t,i = 1) = αj = 1−P(Yj,t,i = 0), αj ∈ [0, 1), such that these sequences are
mutually independent and independent of the sequence Rt, t ∈ Z. For each t,
Rt is independent of Xs, s < t.

A number of thinning operator properties are provided in [12] and [13].
Properties of the BINAR(1) model can be easily derived and a number of these
are provided in [12]. We will expand on the work by [9] and [11] by analysing
additional copulas for the BINAR(1) model innovation distribution as well as
estimation methods for the distribution parameters.
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3 Copulas

Copulas are used for modelling the dependence between several random vari-
ables. The main advantage of using copulas is that they allow to model the
marginal distributions separately from their joint distribution. More informa-
tion about Copula theory, properties and applications can be found in [10] and
[8].

Since innovations of a BINAR(1) model are non-negative integer-valued
random variables, one needs to consider copulas linking discrete distributions.
According to Sklar’s theorem [14], if F1 and F2 are discrete marginals then a
unique copula representation exists only for values in the range of Ran(F1)×
Ran(F2). However, the lack of uniqueness does not pose a problem in empirical
applications because it implies that there may exist more than one copula
which describes the distribution of the empirical data. Bivariate copulas which
will be used when constructing and evaluating the BINAR(1) model in this
paper are:

• The Farlie-Gumbel-Morgenstern (FGM) copula with θ ∈ [−1, 1]:

C(u1, u2; θ) = u1u2(1 + θ(1− u1)(1− u2)),

• The Frank copula with θ ∈ (−∞,∞) \ {0}:

C(u1, u2; θ) = −1
θ

log
(

1 + (exp(−θu1)− 1)(exp(−θu2)− 1)
exp(−θ)− 1

)
,

where u1 := F1(x1), u2 := F2(x2). Here θ is the dependence parameter and
F1, F2 - marginal cdfs. See [10] for properties of these copulas.

4 Parameter estimation of the copula-based BINAR(1)
model

In this section we examine different BINAR(1) model parameter estimation
methods. Let Xt = (X1,t, X2,t)′ be a non-negative integer-valued time series
given in Def. 1, where the joint distribution of (R1,t, R2,t)′, with marginals
F1, F2, is linked by a copula C(·, ·): P(R1,t ≤ x1, R2,t ≤ x2) = C(F1(x1), F2(x2))
and let C(F1(x1), F2(x2)) = C(F1(x1), F2(x2); θ), where θ is a dependence pa-
rameter.
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4.1 Conditional least squares (CLS) estimation

The Conditional Least Squares (CLS) estimator minimizes the squared distance
between Xt and its conditional expectation. Similarly to the method in [13]
for the INAR(1) model, we construct the CLS estimator in the case of the
BINAR(1) model. The CLS estimators of αj , λj , j = 1, 2 are found by
minimizing the sum

Qj(αj , λj) :=
N∑

t=2
(Xj,t − αjXj,t−1 − λj)2 −→ min

αj ,λj

, j = 1, 2. (2)

The asymptotic properties of the CLS estimators for the INAR(1) model
case are provided in [13]. Assume now that the Poisson innovations R1,t
and R2,t with parameters λ1 and λ2, respectively, are joint by a copula with
dependence parameter θ. In order to estimate θ, [3] minimized the sum of
squared differences

S(M1,M2) =
N∑

t=2

(
X̃CLS

1,t X̃CLS
2,t − γ(M1,M2)(λ̂CLS

1 , λ̂CLS
2 ; θ)

)2
, (3)

where

X̃CLS
j,t := Xj,t − α̂CLS

j Xj,t−1 − λ̂CLS
j , j = 1, 2,

γ(M1,M2)(λ1, λ2; θ) :=
M1∑

k=1

M2∑

l=1
kl c(F1(k;λ1), F2(l;λ2); θ)− λ1λ2,

where c(F1(k;λ1), F2(s;λ2); θ) is the joint probability mass function and M1
and M2 are used to approximate the covariance γ(λ1, λ2; θ) as described in [3].

4.2 Conditional maximum likelihood (CML) estimation

BINAR(1) models can also be estimated via conditional maximum likelihood
(CML) (see [11] and [9]). The log conditional likelihood function is:

` =
N∑

t=2
logP(X1,t = x1,t, X2,t = x2,t|X1,t−1 = x1,t−1, X2,t−1 = x2,t−1)

for some initial values x1,1 and x2,1. In order to estimate the unknown
parameters we maximize the log conditional likelihood:

`(α1, α2, λ1, λ2, θ) −→ max
α1,α2,λ1,λ2,θ

. (4)
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Numerical maximization is straightforward with the optim function from R
statistical software.

For other marginal distribution cases where the marginal distribution has
parameters other than λj , equation (4) would need to be minimized by those
additional parameters.

4.3 Two-step estimation based on CLS and CML

Depending on the range of attainable values of the parameters and the sample
size, CML maximization might take some time to compute. On the other
hand, since CLS estimators of αj and λj are easily derived, [3] proposed to
substitute the parameters of the marginal distributions in eq. (4) with CLS
estimates from eq. (2). Then we would only need to maximize ` with respect
to a single dependence parameter θ.

4.4 Estimation method comparison via Monte Carlo simulation

A Monte Carlo simulation was carried out in [3] in order to compare the
estimation methods. The estimates of the dependence parameter were similar
in terms of MSE and bias for both CML and Two-step estimation method.

5 Seasonality

Assume now that the nonnegative integer-valued time series can be written
in the following form Zt = St + Xt, where Xt is defined by equation (1) and
St = (S1,t, S2,t)′ is the (deterministic) integer-valued seasonal component with
period d, where Sj,t = Sj,t+d, ∀t and j = 1, 2 and

∑d−1
k=0 Sj,t+k = 0.

In order to remove the seasonal effect but keep the nonnegative, integer-
valued properties of the data, we defined the operator s(L) = 1+L+ ...+Ld−1,
where LkZt = Zt−k, k ≥ 0. By applying this operator, the seasonal component
is removed and the sample size decreases by d− 1 observations. Alternatively,
data can also be aggregated to a lower frequency (e.g. from daily to weekly
data) in order to remove the seasonal effect at the cost of reducing the sample
size d times. Finally, one can extend the seasonal INAR(1) model proposed in
[1] to the BINAR(1) case.

Comparisons of these different seasonal adjustment methods is left for future
research.

109



A. Buteikis

6 Application on default loan data

In this section we estimate a BINAR(1) model with the joint innovation distri-
bution modelled by a copula cdf for empirical data. The dataset consists of
weekly data on loans issued in Spain from October 21st, 2013, to January 1st,
2016 which includes loans that have defaulted and loans that were repaid with-
out missing any payments. We will analyse and model the dependence between
defaulted and non-defaulted loans as well as the presence of autocorrelation
by considering a BINAR(1) model with different copulas for the innovations.
For the marginal distributions of the innovations we considered Poisson as well
as negative binomial distributions. We used the Two-step estimation method
to estimate parameters. The dependence and variance parameter estimates
when both marginals are negative binomial are provided in Table 1. Additional
modelling results are provided in [3].

Table 1: Dependence and variance parameter estimates for BINAR(1) model
via Two-step estimation method

Copula θ̂ σ̂2
1 σ̂2

2 AIC
FGM 0.8927 6.5581 45.3683 1466.1542

(0.1867) (1.2402) (7.5522)
Frank 2.3848 6.5875 45.426 1466.9795

(0.5337) (1.2613) (7.5774)

Overall, both Frank and FGM copulas provide similar fit in terms of AIC,
regardless of the selected marginal distributions. The FGM copula is used to
model weak dependence. Given a larger sample size, a Frank copula might be
more appropriate because it can capture a stronger dependence than that of
an FGM copula. Furthermore, the estimated dependence parameter is positive
for the Frank and FGM copula cases, which indicates that there is a positive
dependence between defaulted and non-defaulted loans.

7 Conclusions

In this short paper we have analysed different estimation methods for estimating
parameters of a BINAR(1) model, including the dependence parameter of
its innovations, which are linked via a copula. According to Monte Carlo
simulations carried out in [3], BINAR(1) parameter estimates via CML had
the smallest MSE and bias, however, estimates of the dependence parameter
via CML and Two-step methods were similar. We also suggested a method to
seasonally adjust the integer-valued data which exhibits a seasonal variation.

110



Copula based BINAR models with applications

An empirical application on loan data was carried out and BINAR(1) models
were estimated using different combinations of copula functions and marginal
distribution functions. Additional estimation results are provided in [3]. The
FGM copula provided the best model fit with Frank copula being very close
in terms of AIC values. A larger sample size could help determine whether
FGM or Frank copula is more appropriate to model the dependence between
defaulted and non-defaulted loan amounts. Furthermore, the estimated copula
dependence parameter indicates that the dependence between defaulted and
non defaulted loans is positive.

Finally, one can apply different copula functions in order to analyse whether
the loan data exhibits different forms of dependence. Lastly, the model can
be extended by analysing the presence of structural changes within the data
as well as extending the BINAR(1) model with copula joint innovations to
account for the past values of other time series rather than only itself.
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We consider estimation of the diffusion parameter of a diffusion process observed
over a fixed time interval. We present conditions on approximate martingale
estimating functions under which estimators are rate optimal and efficient in
the case of in-fill asymptotics. In this setup, limit distributions of the estimators
are non-standard, in the sense that they are usually normal variance-mixtures.
In particular, the mixing distribution depends on the full sample path of
the diffusion process over the observation time interval. We also present the
more applicable result that, after a suitable data-dependent normalisation,
estimators converge in distribution to a standard Gaussian limit. The results
presented here are joint work with Michael Sørensen, and published in [10].

Keywords: Stochastic differential equations, approximate martingale esti-
mating functions, in-fill asymptotics, rate optimality, stable convergence

1 Introduction

Diffusion processes are used in a variety of fields to model continuous-time
dynamics, for instance, in biology, finance, and neuroscience. However, the
corresponding data are usually only observable at discrete time-points. Except
in a few simple cases, the likelihood function based on the discrete-time obser-
vations is not known explicitly. Thus, for parameter estimation, alternatives
to maximum likelihood estimation must be considered.

Here, we focus on a one-dimensional diffusion process (Xθ
t )t≥0, which solves

a stochastic differential equation of the form

dXθ
t = a(Xθ

t ) dt+ b(Xθ
t , θ) dWt ,

θ ∈ Θ, where (Wt)t≥0 is a standard Wiener process. Let θ0 ∈ Θ denote the
true, unknown parameter. We assume observations of (Xθ0

t )t≥0 over the fixed
time-interval [0, 1] at times tni = i∆n, i = 0, 1, . . . , n, with ∆n = 1/n. In the
following, we put Xt = Xθ0

t and Xn
i = Xθ0

tn
i

.
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For simplicity, we assume that Θ ⊆ R, but an extension of the following
results to a multidimensional parameter would be straightforward. Similarly,
the observation time interval [0, 1] may be generalised to other compact time
intervals by rescaling of the drift and diffusion coefficients a and b.

We consider estimators of the diffusion parameter θ, which are based on
approximate martingale estimating functions. Many well-known estimators
proposed in the literature may be formulated in terms of these estimating
functions, see [12]. Our aim is to give a simple characterisation of the estimating
functions that produce efficient estimators of the diffusion parameter when the
sample size n increases to infinity.

Here, an approximate martingale estimating function Gn(θ) may be written
on the form

Gn(θ) =
n∑

i=1
g(∆n, X

n
i , X

n
i−1, θ) .

It is given by a real-valued function g(t, y, x, θ), which satisfies that for all
θ ∈ Θ, the conditional expectation

E
(
g
(

∆n, X
θ
tn

i
, Xθ

tn
i−1
, θ
)
|Xθ

tn
i−1

)

is of order ∆γ
n, for some constant γ ≥ 2. A Gn-estimator solves the estimating

equation Gn(θ) = 0.
Under other asymptotic scenarios often considered for diffusion processes,

limit distributions of estimators are typically Gaussian, with variances depend-
ing on θ0, see e.g. [2, 4, 6, 11, 12]. Under the sampling scheme considered here,
the limit distributions are usually normal variance-mixture distributions. In
addition to depending on θ0, these distributions may also depend on the full
sample path of the diffusion process over the observation time interval. Esti-
mation and asymptotics under the current observation scheme have previously
been treated by, e.g., [1, 3, 5].

It was shown in [1, 5] that under suitable regularity conditions, the model
and observation scheme considered here satisfy the local asymptotic mixed
normality property with rate

√
n and random asymptotic Fisher information

I(θ0) = 2
∫ 1

0

∂θb(Xs, θ0)2

b2(Xs, θ0) ds .

Here, ∂θb(x, θ) denotes the first partial derivative of b with respect to θ. This
result is used to characterise a consistent estimator θ̂n as rate optimal and
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efficient if
√
n
(
θ̂n − θ0

) D−→ L

as n→∞, where L = I(θ0)−1/2Z, with Z standard normal distributed and
independent of I(θ0). We may interpret

√
n as the fastest possible rate of

convergence in distribution, and L as the limit distribution with the smallest
possible variance, conditionally on I(θ0).

2 Main results

The work presented in [10] establishes existence, uniqueness, and asymptotic
distribution results concerning consistent Gn-estimators, addressing the ques-
tion of their rate optimality and efficiency. The essence of the main results of
[10], Theorem 3.2 and Corollary 3.4, is summarized in the following Theorem 1,
and Corollaries 1 and 2. Technicalities, as well as the existence and uniqueness
results, are omitted here.
Theorem 1. Assume suitable regularity assumptions. Suppose that

∂yg(0, y, x, θ)|y=x = 0 (1)

for all x and θ. Then, for any consistent Gn-estimator θ̂n,
√
n(θ̂n − θ0) D−→W (θ0)Z

as n→∞, where Z is standard normal distributed and independent of

W (θ0) =

(
2
∫ 1

0
b4(Xs, θ0)∂2

yg(0, Xs, Xs, θ0)2 ds

)1/2

∫ 1

0
∂θb

2(Xs, θ0)∂2
yg(0, Xs, Xs, θ0) ds

. (2)

Here, ∂2
yg denotes the second partial derivative of g with respect to y.

Condition (1) ensures estimators that converge at the optimal rate
√
n. The

proof of Theorem 1 relies on, among others, results from [8, 9], including a
stable central limit theorem, Theorem IX.7.28, from [8]. The expression (2)
reveals that W (θ0) is usually random, and depends on the full sample path of
the diffusion process over the observation time interval. For finite sample sizes,
this sample path is only observed at discrete time-points. We use properties of
stable convergence in distribution to deal with these complications. The result
in Corollary 1 below shows that when suitably normalised, the estimators from
Theorem 1 converge in distribution to a standard Gaussian limit.
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Corollary 1. Assume suitable regularity assumptions, and suppose that (1)
holds. Let θ̂n be any consistent Gn-estimator. Then

Ŵn = −

(
1

∆n

n∑

i=1
g2(∆n, X

n
i , X

n
i−1, θ̂n)

)1/2

n∑

i=1
∂θg(∆n, X

n
i , X

n
i−1, θ̂n)

satisfies that Ŵn
P−→W (θ0), and it holds that
√
n Ŵ−1

n (θ̂n − θ0) D−→ N (0, 1) .

Finally, the additional condition (3) ensures efficiency of the estimators.
Corollary 2. Assume suitable regularity assumptions. Suppose that (1) and

∂2
yg(0, y, x, θ)

∣∣
y=x = Cθ

∂θb
2(x, θ)

b4(x, θ) (3)

hold for all x and θ, where Cθ is a non-zero constant. Then any consistent
Gn-estimator is efficient.

For example, it may be verified that the estimating function given by

g̃(t, y, x, θ) = ∂θb
2(x, θ)

b4(x, θ)
(
(y − x)2 − tb2(x, θ)

)

satisfies (1) and (3), and corresponds to the efficient contrast function in [3],
Theorem 5. It should be noted that conditions (1) and (3) also appear in
[7, 12] under other sampling scenarios. Consequently, a number of approximate
martingale estimating functions discussed in those papers satisfy our rate
optimality and efficiency conditions.

3 Simulation study

The paper [10] also includes a simulation study. Visual comparisons are made
of distributions pertaining to estimators based on two approximate martingale
estimating functions, which are not covered by the theory of [3]. An excerpt
from this simulation study is summarized here. Ten thousand sample paths of
a diffusion process given by

dXθ
t = −2Xθ

t dt+ (θ + (Xθ
t )2)−1/2 dWt (4)
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Figure 1: Q-Q plots comparing the distribution of
√
n Ŵ−1

n (θ̂n − θ0) for the
efficient (left) and inefficient (right) estimator, respectively, to the
standard normal distribution, when n = 1000.

were simulated with θ0 = 1 and X0 = 0, and parameter estimates were
computed using the two estimating functions. These estimating functions were
given by h and h̃, respectively:

h(t, y, x, θ) = (y − (1− 2t)x)2 − (θ + x2)−1t

h̃(t, y, x, θ) = (θ + x2)10h(t, y, x, θ)

The functions h and h̃ both satisfy the rate-optimality condition (1). However,
only h satisfies the efficiency condition (3) for the model (4). Figure 1 shows
Q-Q plots comparing the distribution of

√
n Ŵ−1

n (θ̂n−θ0) for the efficient (left)
and inefficient (right) estimating function, respectively, to the standard normal
distribution, when the sample size is n = 1000. In this example from [10],
it seems that as the sample size increases, the standard normal distribution
becomes a good approximation faster in the efficient case than in the inefficient
case. This is an interesting observation, as the current theory does not speak
about the speed of this convergence.
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Poincaré (B) Probabilités et Statistiques, 29(1):119–151, 1993.

[4] A. Gloter and M. Sørensen. Estimation for stochastic differential equations
with a small diffusion coefficient. Stochastic Processes and their Applications,
119(3):679–699, 2009.

[5] E. Gobet. Local asymptotic mixed normality property for elliptic diffusion:
a Malliavin calculus approach. Bernoulli, 7(6):899–912, 2001.

[6] M. Jacobsen. Discretely observed diffusions: Classes of estimating functions
and small Delta-optimality. Scandinavian Journal of Statistics, 28(1):123–
149, 2001.

[7] M. Jacobsen. Optimality and small Delta-optimality of martingale estimat-
ing functions. Bernoulli, 8(5):643–668, 2002.

[8] J. Jacod and A. Shiryaev. Limit Theorems for Stochastic Processes. Number
288 in Grundlehren der mathematischen Wissenschaften. Springer-Verlag,
Berlin Heidelberg New York, 2nd edition, 2003.

[9] J. Jacod and M. Sørensen. Aspects of asymptotic statistical theory for
stochastic processes. Preprint. University of Copenhagen, 2012.

[10] N. M. Jakobsen and M. Sørensen. Efficient estimation for diffusions
sampled at high frequency over a fixed time interval. Bernoulli, 23(3):1874–
1910, 2017.

[11] M. Kessler. Estimation of an ergodic diffusion from discrete observations.
Scandinavian Journal of Statistics, 24:211–229, 1997.

[12] M. Sørensen. Efficient estimation for ergodic diffusions sampled at high
frequency. Preprint. University of Copenhagen, 2015.

118



Estimates for distributions of Hölder
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We provide estimates for distributions of semi-norms of sample functions of
random processes from spaces Fψ(Ω), defined on a compact space and on an
infinite interval [0,∞), in Hölder spaces.

Keywords: random processes, Fψ(Ω) spaces of random variables, moduli of
continuity, Hölder spaces, semi-norms

1 Introduction

Fψ(Ω) spaces of random variables and processes belonging to these spaces
are investigated by Kozachenko and Mlavets’ [5].

In the following we deal with estimates of distributions of Hölder semi-norms
of sample functions of random processes from spaces Fψ(Ω), i.e. probabilities

P





sup
0<ρ(t,s)≤ε
t,s∈T

|X(t)−X(s)|
f(ρ(t, s)) > x




.

Such estimates and assumptions under which semi-norms of sample functions
of random processes from spaces Fψ(Ω), defined on a compact space, satisfy the
Hölder condition were obtained by Zatula and Kozachenko [7]. Similar results
were provided for Gaussian processes, defined on a compact space, by Dudley [3].
Buldygin and Kozachenko [2] generalized Dudley’s results for random processes
belonging to Orlicz spaces. Marcus and Rosen [4] obtained Lp moduli of
continuity for a wide class of continuous Gaussian processes. Kozachenko et
al. [6] studied the Lipschitz continuity of generalized sub-Gaussian processes
and provided estimates for the distribution of Lipschitz norms of such processes.
But all these problems were not considered yet for processes, defined on an
infinite interval.

∗Corresponding author: dm.zatula@gmail.com
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2 Preliminaries

Definition 1. Let ψ(u) > 0, u ≥ 1 be some increasing function such that
ψ(u)→∞ as u→∞. We say that a random variable ξ belongs to the space
Fψ(Ω) (see [5]) if

sup
u≥1

(E|ξ|u)1/u

ψ(u) ≤ ∞.

It is proved in the paper [5] that Fψ(Ω) is a Banach space with respect to
the norm

‖ξ‖ψ = sup
u≥1

(E|ξ|u)1/u

ψ(u) .

Theorem 1 ([5]). If a random variable ξ belongs to the space Fψ(Ω), then

P{|ξ| > x} ≤ inf
u≥1

‖ξ‖uψ · (ψ(u))u

xu

for all x > 0.
Let ξ1, ..., ξn be random variables belonging to the space Fψ(Ω). Put

ηn = max
1≤k≤n

|ξk|, an = max
1≤k≤n

‖ξk‖ψ.

Definition 2. An Fψ(Ω) space has the property Z if there are monotonically
non-decreasing function z(x) > 0, monotonically increasing function U(n)
and the real number x0 > 0 such that for all sequence of random variables
(ξk, k = 1, n) from the space Fψ(Ω), ∀x > x0 and for all n ≥ 2 the following
holds

P{ηn > x · an · U(n)} ≤ 1
n

exp{−z(x)}.

Definition 3 ([5]). We say that a random process X = {X(t), t ∈ T} belongs
to the space Fψ(Ω) if random variables X(t) belong to Fψ(Ω) for all t ∈ T.
Definition 4 ([2]). Let (T, ρ) be a metric space. The metric massiveness
N(u) := N(T, ρ)(u) is the minimal number of closed balls (defined with respect
to the metric ρ) that cover T and that have radiuses which do not exceed u.
Definition 5 ([2]). A function q = {q(t), t ∈ R} is called the modulus of
continuity if q(t) ≥ 0, q(0) = 0 and q(t+ s) ≤ q(t) + q(s) for t > 0 and s > 0.
Definition 6 ([1]). A function v(x) satisfy Hölder condition with exponent
α ∈ (0, 1] if the following value is finite:

[v]α,T = sup
t,s∈T
t 6=s

|v(t)− v(s)|
|t− s|α .

120



Estimates for distributions of Hölder semi-norms

Hölder space C0,α(T) is a space of all continuous functions such that the
Hölder condition is satisfied with exponent α in the space T.

In the present we deal with a generalization of the semi-norm [v]α,T in the
space C0,α(T). Let’s consider the quantity

[v]q,ρ,T = sup
t,s∈T
t 6=s

|v(t)− v(s)|
q(ρ(t, s)) ,

where ρ is a metric in the space T, and q = {q(t), t ∈ T} is a modulus of
continuity such that ∃α ∈ (0, 1] ∀t, s ∈ T, t 6= s : q(ρ(t, s)) ≤ |t− s|α.

3 Main results

In this section we formulate theorems on estimates for distributions of Hölder
semi-norms and moduli of continuity of random processes from spaces Fψ(Ω),
defined on a compact space and on infinite interval.

Theorem 2. Let (T, ρ) be a metric compact space. Consider a separable
random process X = {X(t), t ∈ T} belonging to the space Fψ(Ω) that has the
property Z with functions U(n), z(x) and x0 > 0.

Suppose that there is a monotonically increasing continuous function
σ = {σ(h), h ≥ 0} such that σ(h) > 0 as h > 0, σ(0) = 0 and the following
inequality holds

sup
ρ(t,s)≤h

‖X(t)−X(s)‖ψ ≤ σ(h). (1)

Let N(ε) = Nρ(T, ε) be a metric massiveness of the space (T, ρ). Consider

ε0 = σ(−1)
(

sup
t,s∈T

ρ(t, s)
)

, where σ(−1)(h) is the inverse function of the function

σ(h), and

gB(ε) =
σ(ε)∫

0

U(B2N2(σ(−1)(t)))dt <∞, ε > 0.

Then for x > x0, ε ∈ (0, ε0) and B > 1 the following inequality holds true

P
{

sup
0<ρ(t,s)≤ε

|X(t)−X(s)|
(6 + 4

√
2)fB(ρ(t, s)) + (5 + 2

√
6)gB(ρ(t, s))

> x

}
≤

≤ 2B(2B + 1)
(B2 − 1)N(ε) · exp{−z(x)},
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where fB(ε) =
σ(ε)∫
0
U(BN(σ(−1)(t)))dt, ε > 0.

Theorem 3. Let the assumptions of Theorem 2 hold true. Then the following
inequality holds

lim sup
ε↓0

∆(X; ε)
x0((6 + 4

√
2)fB(ε) + (5 + 2

√
6)gB(ε))

≤ 1

with probability 1, where

∆(X; ε) = sup
t,s∈T

0<ρ(t,s)≤ε

|X(t)−X(s)|,

fB(ε) =
σ(ε)∫
0
U(BN(σ(−1)(t)))dt, gB(ε) =

σ(ε)∫
0
U(B2N2(σ(−1)(t)))dt <∞.

Now consider an infinite interval [0,∞). Let [0,∞) =
∞⋃
i=0

Ai, where

Ai = [ai, ai+1] and {ai, i = 0, 1, ...,∞} is an increasing sequence, a0 = 0.

Denote αi = ai+1 − ai and Di = [ai, ai+1 + θ], where θ ∈
(

0,min
i≥0

αi

)
. Let

Ni(ε) be metric massiveness for Di, i = 0, 1, ... with the metric ρ(t, s) =
|t− s|, t, s ∈ [0,∞).

Theorem 4. Consider a separable random process X = {X(t), t ∈ [0,∞)}
belonging to the Banach space Fψ(Ω) that has the property Z with functions
U(n), z(x) and x0 > 0. Suppose that there are monotonically increasing
continuous functions σi = {σi(h), h ≥ 0} such that σi(0) = 0, i = 0, 1, ... and
∀i = 0, 1, ... the following inequality holds

sup
|t−s|≤h
t,s∈Di

‖X(t)−X(s)‖ψ ≤ σi(h), 0 < h < αi + θ. (2)

Let also

ε0 = min
i≥0

{
σ

(−1)
i

(
sup
t,s∈Di

ρ(t, s)
)}

= min
i≥0

{
σ

(−1)
i (αi + θ)

}
,

where σ
(−1)
i (h) are inverse functions to functions σi(h), i = 0, 1, ..., and

∀i = 0, 1, ... :

gB,i(ε) =
σi(ε)∫

0

U(B2N2
i (σ(−1)

i (t)))dt <∞;
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fB,i(ε) =
σi(ε)∫

0

U(BNi(σ(−1)
i (t)))dt, ε > 0.

Denoting wB,i(t, s) = (6+4
√

2)fB,i(|t−s|)+(5+2
√

6)gB,i(|t−s|), t, s ∈ Di

and wB(t, s) is such function that

wB(t, s) = {wB,i(t, s) | t, s ∈ Ai or min{t, s} ∈ Ai, max{t, s} ∈ Ai+1},

we obtain that for all x > x0, ε ∈ (0,min{ε0, θ}) and θ > ε under the condition
∞∑
i=0

1
αi
<∞ the following inequality holds true:

P





sup
0<|t−s|≤ε
t,s∈[0,∞)

|X(t)−X(s)|
wB(t, s) > x




≤ 4εB(2B + 1)

B2 − 1 · exp{−z(x)} ·
∞∑

i=0

1
αi + ε

.
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Finite Mixture of C-vines for Complex
Dependence
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Recently, there has been an increasing interest on the combination of copulas
with a finite mixture model. Such a framework is useful to reveal the hidden de-
pendence patterns observed for random variables flexibly in terms of statistical
modeling. The combination of vine copulas incorporated into a finite mixture
model is also beneficial for capturing hidden structures on a multivariate data
set. In this respect, the main goal of this study is extending the study of Kim
et al. (2013) with different scenarios. For this reason, finite mixture of C-vine
is proposed for multivariate data with different dependence structures. The
performance of the proposed model has been tested by different simulated data
set including various tail dependence properties.

Keywords: copula; dependence; finite mixture; C-vine; tail dependence

1 Full Inference on C-vine Copula

This section is introduced to recall inference procedures of parameters in Vine
copula, exemplified by C-vine copula. Generally, p-dimensional C-vine copula
density can be written as in 1,

f(x;φcvine) =
p∏

k=1
fk(xk)

p−1∏

i=1

p−i∏

j=1
ci,i+j|1:(j−1)

(F (xi|x1, ..., xi−1), F (xi+j |x1, ..., xi−1);βi,i+j|(i+1):(i+j−1))

(1)

where fk(xk) denotes the marginal densities, ci,i+j|1:(j−1) are the bivariate
copula density functions with parameter(s) βi,(i+j)|(i+1):(i+j−1), and φcvine is
the set of all parameters in p-dimensional C-vine density.

∗Corresponding author: ozanevkaya@gmail.com



There exist one root node in the tree construction of C-vine model which
results in following illustration in 4-dimension given by equation 2,

f(x1, x2, x3, x4;φ) = c12(F (x1), F (x2);β12)c13(F (x1), F (x3);β13)
c14(F (x1), F (x4);β14)
c23|1(F (x2|x1), F (x3|x1);β23|1)c24|1(F (x2|x1), F (x4|x1);β24|1)

c34|12(F (x3|x1, x2), F (x4|x1, x2);β34|12)
4∏

k=1
fk(xk)

(2)

Under such multivariate framework, full inference on C-vine copula can be
derived using the log-likelihood function presented in 3,

L(φ) =
p−1∑

i=1

p−i∑

j=1

N∑

n=1
log ci,i+j|(1):(j−1)

(F (xi,n|x1,n, ..., xi−1,n), F (xi+j,n|x1,n, ..., xi−1,n);βi,i+j|(i+1):(i+j−1))
(3)

and following three consecutive steps:

Step 1 Decide which variable is used as a root node in the first tree T1 of a
C-vine copula (i.e. joining the variables in which the root node variable
is selected based on its significant relations with other variables)

Step 2 Specify the family and parametric shape of each pair-copula in an assumed
C-vine copula

Step 3 Estimate all parameters of C-vine by maximizing the log-pseudo likeli-
hood function given in 3

2 Finite Mixture of C-vines

The finite mixture model is introduced to connectm component C-vine densities
to detect complex and hidden dependence structures in multivariate data with
the related EM algorithm for estimating the parameters in the model.

Assume that a p-dimensional random vector X=(X1, ..., Xp) is said to be
generated from a mixture of M - component C-vine densities, where its density
function is defined as in 4.
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g(x,θ) =
M∑

m=1
πmf(x,φm) (4)

where πm is the mixing proportion of the m-th component s.t. 0 < πm < 1
and

∑M
m=1 πm = 1. Besides, φm is the m-th component-specific parameter

vector for the C-vine density described in 4. Note that θ is the set of all
parameters with dimension p and denoted by Θ, full product space (the
simplex of πm and the cross product space of φm). Here p is the total number
of free parameters to be estimated and p = (M − 1) +

∑M
m=1 dim(φm). For

the estimation of equation 4, both the number of components M and the
parameters θ are required to estimate, using the following EM-algorithm setup,
proposed previously by Dempster et al. (1977).

Assume that N observations randomly drawn from a M component C-vine
density given in 4, denoted as xk=(xk,1, ..., xk,p) where k = 1, ..., p. Then,
log-likelihood of θ is described as given in 5

L(θ) = log(
N∏

n=1
g(xn,θ)) = log(

N∏

n=1

M∑

m=1
πmf(xn,φm)) (5)

Let zn=(zn1, ..., znm, ..., znM ) denotes latent variables, where znm = 1 if xn

drawn from the m-th component and znm = 0 otherwise. Here, zn is i.i.d.
from a multinomial distribution, i.e. zn is Mult(M,π = (π1, ..., πm)). Under
this setup, the complete log-likelihood for the complete data set yn=(xn,zn) is
given by equation 6.

L(θ)c = log
N∏

n=1

M∏

m=1
[πmf(xn,φm)]znm

=
N∑

n=1

M∑

m=1
znm log(πm) +

N∑

n=1

M∑

m=1
znm log(f(xn,φm))

(6)

Starting with initial values (initial guesses) for the parameters, θ0, the re-
peated E-th and M-th step of the EM algorithm (to compute the successive
estimates, θs) is described as follows:

E-step Calculates the conditional expectation of L(θ)c given the observed data
and current parameter estimates for θ. Such a computation is equivalent
to the calculation of posterior probability that xn belongs to the m-th
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component, given the current values of the parameters formulated as in
equation 7

ẑnm
(s) = E[znm|x, θs] = P [znm = 1|x, θs] = π

(s)
m f(xn,φ

(s)
m )

∑M
l=1 π

(s)
l f(xn,φ

(s)
l )

(7)

M-step Computes the parameter estimates for each component independently,
(π(s+1)

1 , ..., π(s+1)
m ,..., π(s+1)

M ) and (φ(s+1)
1 , ..., φ(s+1)

m , ..., φ(s+1)
M ) by max-

imizing the expected complete-data log-likelihood from E-step. It is

also possible to obtain closed form solution for π(s+1)
m =

∑N

n=1
ẑnm

(s)

N .
Afterwords, the estimation of φ(s+1)

m in the m-th component C-vine or
D-vine density function is equivalent to deriving the parameter estimates
weighted by ẑnm

(s) for the parameters in a C-vine density in equation 4.

The E-step and the M-step are iterated until L(θs+1) − L(θs) is smaller
than a pre-specified tolerance value (ie. 10−6 or 10−8), as a result of a nice
property of EM algorithm that the log-likelihood is not decreased during the
iteration. Based on the above setup, the given algorithm is run with multiple
starting values randomly drawn from the parameter space and the best values
is chosen from multiple local maximizer having the highest log-likelihood value.
To accomplish the full inference on mixture of C-vines, three well known model
selection criteria values are used:

• Akaike’s Information Criterian (AIC) as defined AIC = −2 log(L(θ̂))+2p

• Bayesian Information Criterian (BIC) as defined BIC = −2 log(L(θ̂)) +
p log(n)

• Consistent AIC (CAIC) as defined CAIC = −2 log(L(θ̂)) + p(log(n) + 1)

where θ̂ is the estimate of p-dimensional θ defined in 4. In this study, the
main objective is identifying the full inference on C-vine mixture model based
on different scenarios. For this reason, the whole procedure for the full inference
of C-vine copula can be summarized as follows:

Step 1 Derive the normalized ranks of d-dimensional observed data

Step 2 Decide the root node of each C-vine density by calculating all pairwise
correlations.
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Step 3 Consider different candidates of copulas for all pairs in an assumed
mixture model

Step 4 Given a copula family, fit a mixture vine copula with M component and
estimate the parametersin each model by employing the EM- algorithm

Step 5 Select the best fitted model by finding the model with smallest values of
model selection criterians such as AIC, BIC and CAIC.

For the last step, naturally, even if the selection criteria measures give
meaningful conclusions, they are not enough to decide the best fitted model.
For this reason, available GOF tests are also required to improve the model
selection part. Especially, Clarke and Vuong tests are widely used GOF test for
comparing two different vine copulas might be considered in model selection.

3 Simulation Results

To test the performance of the mixture model, the base mixture model is
constructed using Clayton and Gumbel pairs with parameters (βC

12 = 8, βC
13 =

7, βC
23|1 = 6) and (βG

12 = 9, βG
13 = 6, βG

23|1 = 5), respectively. As the number of
parameters described, as a simple case, the mixture of C-vines are considered
in 3-dimension with positive strong tail dependencies.

Here, as a simulated data, 2 component equally weighted mixture of C-
vines is considered under the proposed mixture model to investigate the
data generating process performs well or not. In this setup, the number of
observations has been increased from N = 50 (small data set) to N = 1000
(large data set) to see the differences in parameter estimation process. For now,
parameter estimation results of 2-component C-vine mixture with Clayton
pairs are presented for illustration. Here, the estimated parameters for each
pair of both components are obtained using the average value and the median
values of 1000 different run given in () and [] table, respectively.

In table 1, as it is expected, parameter estimations of the first component
are very close to true value since the correct copula family at each step
is predefined as Clayton at the beginning for the simulated data. Besides,
the number of observations has positive impact on closing the gap between
parameter estimates and true values. Generally, the most suitable model will
be determined by comparing the model comparison values among different
scenarios like Clayton-Clayton, Clayton-Gumbel, Frank-Gumbel, assumed pair
copulas in mixture model. As we expected, the most plausible result will be
obtained from the Clayton-Gumbel pair families selection for the first-second
component, same as the original simulated data.
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Table 1: Parameter Estimation and Model Comparison Values
Number of Observations

50 100 250 500 1000
β̂C

12 (7.19)[7.3] (7.95)[8.05] (8.77)[8.82] (8)[8] (8)[8]
β̂C

13 (6.49)[6.6] (7.08)[7.15] (7.76)[7.71] (7)[7] (7)[7]
β̂C

23|1 (4.29)[4.24] (4.29)[4.25] (4.81)[4.81] (6)[6] (6)[6]
β̂C

12 (7.6)[7.66] (7.29)[7.27] (7.12)[7.22] (7.07)[6.98] (7.65)[7.39]
β̂C

13 (6.3)[6.32] (5.8)[5.79] (5.55)[5.66] (5.5)[5.43] (6.03)[5.87]
β̂C

23|1 (3.32)[3.11] (2.85)[2.53] (2.53)[2.42] (2.56)[2.54] (2.14)[2.17]
AIC -194 -363 -783 -1536 -3001
BIC -188 -356 -773 -1524 -2986

CAIC -185 -353 -770 -1521 -2983
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We introduce the notions of auto-distance covariance and correlation matrices
for multivariate time series and give their consistent estimators. In addition, a
testing methodology for testing the i.i.d. hypothesis for multivariate time series
data is developed. The resulting test statistic is compared with the related
multivariate Ljung-Box statistic in a real data example.
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1 Introduction

There has been a considerable recent interest in measuring dependence by
employing the concept of distance covariance function, a new measure of
dependence for random variables, introduced by Székely et al. (2007). This
tool has been recently defined to the context of multivariate time series by
Zhou (2012), but without exploring the interrelationships between the various
time series components. In this paper, we extend the notion of distance
covariance to multivariate time series by defining its matrix version. Based on
this new concept, we develop a multivariate testing methodology for testing
independence.

2 Auto-distance covariance matrix

We denote by {Xt : t = 0,±1,±2, . . . } a d-dimensional time series process,
with components Xt;r, r = 1, . . . , d. Suppose we have available a sample of size
n, that is {Xt, t = 1, . . . , n}. We define the pairwise auto-distance covariance
function as a function of the joint and marginal characteristic functions of
the pair (Xt;r, Xt+j;m), for r,m = 1, . . . , d. Denote by φ

(r,m)
j (u, v) the joint

characteristic function of Xt;r and Xt+j;m; that is

φ
(r,m)
j (u, v) = E [exp (i(uXt;r + vXt+j;m))] , j ∈ Z,

∗Corresponding author: pitsillou.maria@ucy.ac.cy
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and the marginal characteristic functions of Xt;r and Xt+j;m as φ(r)(u) :=
φ

(r,m)
j (u, 0) and φ(m)(v) := φ

(r,m)
j (0, v) respectively, where (u, v) ∈ R2, and

i2 = −1. The pairwise auto-distance covariance function (ADCV) between
Xt;r and Xt+j;m, Vrm(j), is defined as the positive square root of

V 2
rm(j) = 1

π2

∫

R2

∣∣∣φ(r,m)
j (u, v)− φ(r)(u)φ(m)(v)

∣∣∣
2

|u|2 |v|2
dudv, j ∈ Z.

The auto-distance covariance matrix, V (j), is then defined by

V (j) = [Vrm(j)]dr,m=1 , j ∈ Z.

The pairwise auto-distance correlation function (ADCF) between Xt;r and
Xt+j;m, Rrm(j), is a coefficient that lies in the interval [0, 1] and also measures
dependence and is defined as the positive square root of

R2
rm(j) = V 2

rm(j)√
V 2

rr(0)
√
V 2

mm(0)
,

for Vrr(0)Vmm(0) 6= 0 and zero otherwise. The auto-distance correlation matrix
of Xt, is then defined as

R(j) = [Rrm(j)]dr,m=1 , j ∈ Z.

When j 6= 0, Vrm(j) measures the dependence of Xt;r on Xt+j;m. In general,
Vrm(j) 6= Vmr(j) for r 6= m, since they measure different dependence structure
between the series {Xt;r} and {Xt;m} for all r,m = 1, 2, . . . , d. Thus, V (j)
and R(j) are non-symmetric matrices, but V (−j) = V ′(j) and R(−j) = R′(j).
More properties can be found in Fokianos and Pitsillou (2017b). The empirical
pairwise ADCV, V̂rm(j), for j ≥ 0, is the non-negative square root of

V̂ 2
rm(j) = 1

(n− j)2

n−j∑

t,s=1
Ar

tsB
m
ts ,

where Ar = Ats and Bm = Bts are Euclidean distance matrices given by

Ar
ts = ar

ts − ār
t. − ār

.s + ār
..,

with ar
ts = |Xt;r −Xs;r|, ār

t. =
(∑n−j

s=1 a
r
ts

)
/(n−j), ār

.s =
(∑n−j

t=1 a
r
ts

)
/(n−j),

ār
.. =

(∑n−j
t,s=1 a

r
ts

)
/(n − j)2. Bm

ts is defined analogously in terms of bm
ts =

|Xt+j;m −Xs+j;m|.
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Fokianos and Pitsillou (2017b) showed that for a d-dimensional strictly
stationary and ergodic process {Xt} with E |Xt;r|2 <∞, for r = 1, . . . , d, then
for all j ∈ Z,

V̂ (j)→ V (j),

almost surely, as n→∞. In addition, under pairwise independence it holds
that

nV̂ 2
rm(j)→ Z :=

∑

k

λkZ
2
k ,

in distribution, as n→∞, where {Zk} is an i.i.d sequence of N(0, 1) random
variables, and (λk) is a sequence of nonzero eigenvalues.

3 The testing problem

In this section, we develop a test statistic for testing the null hypothesis that
{Xt} is an i.i.d. sequence. Following Hong’s (1999) generalized spectral domain
methodology, we first consider the generalized spectral density matrix

F (ω, u, v) =
[
f (r,m)(ω, u, v)

]d

r,m=1
,

where

f (r,m)(ω, u, v) = 1
2π

∞∑

j=−∞
σ

(r,m)
j (u, v)e−ijω, ω ∈ [−π, π],

with p denoting the bandwidth parameter. Under the null hypothesis of
independence, F (·, ·, ·) reduces to

F0(ω, u, v) = 1
2π

[
σ

(r,m)
0 (u, v)

]d

r,m=1
.

Thus, comparing the Parzen’s (1957) kernel-type estimators F̂ (ω, u, v) and
F̂0(ω, u, v) via a Frobenious norm we result to a test statistic based on the
ADCV matrix, given by

T̃n =
n−1∑

j=1
(n− j)k2(j/p)tr{V̂ ∗(j)V̂ (j)}, (1)

where k(·) is a univariate kernel function satisfying some standard properties.
Moreover, V̂ ∗(·) denotes the complex conjugate matrix of V̂ (·) and tr(A)
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denotes the trace of the matrix A. Fokianos and Pitsillou (2017b) also formed
a similar test statistic in terms of the ADCF matrix, given by

Tn =
n−1∑

j=1
(n− j)k2(j/p)tr{V̂ ∗(j)D̂−1V̂ (j)D̂−1}. (2)

Under the null hypothesis of independence and some further assumptions
about the kernel function k(·), the standardized version of the test statistics
T̃n and Tn given in (1) and (2) were proved to follow N(0, 1) asymptotically
and they are consistent. Fokianos and Pitsillou (2017a) developed a similar
testing methodology based on ADCV/ADCF for testing serial dependence in
a univariate strictly stationary time series setting.

4 Real data example

In this section we apply the proposed testing methodology to the monthly log
returns of the stocks of IBM and the S&P 500 composite index starting from 29
May 1936 to 28 November 1975 for 474 observations. A larger data set and the
aforementioned testing methodology are included in the R package dCovTS
(Pitsillou and Fokianos, 2016). Assuming that the bivariate series follows a
VAR model and employing the AIC to choose its best order, we obtain that
a VAR(2) model fits well the data. Figure 1 shows the ADCF plot of the
residuals after fitting a VAR(2) model to the original series. Based on this plot,
the residuals of VAR(2) model do not have any strong dependence. The shown
critical values (dotted horizontal line) are the 95% simultaneous critical values
computed based on an algorithm suggested by Fokianos and Pitsillou (2017b)
using the independent wild bootstrap approach (Dehling and Mikosch, 1994;
Shao, 2010; Leucht and Neumann, 2013). To formally confirm the adequacy of
this model fit, we perform tests of independence among the residuals for the
following bandwidth values, p = 6, 11 and 20. The proposed statistic Tn and
the related multivariate Ljung-Box statistic (Hosking, 1980) both give large
p-values (0.254, 0.190, 0.098 and 0.958, 0.809, 0.811 respectively) suggesting
the absence of any serial dependence among the residuals. The calculation
of the statistic Tn is based on the Bartlett kernel. The computation of the
p-values is based on 499 independent wild bootstrap realizations.

Acknowledgements: Financial support from a University of Cyprus research
grant is greatly acknowledged.
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Figure 1: The sample ADCF of the residuals after fitting VAR(2) model to the
bivariate series IBM and S&P500.
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In the case of traditional Ensemble Kalman Filter (EnKF), it is known that
the filter error does not grow faster than exponentially for a fixed ensemble
size [5]. The question posted in this contribution is whether the upper bound
for the filter error can be improved by using an improved covariance estimator
that comes from the right parameter subspace and has smaller asymptotic
variance. Its effect on Spectral EnKF is explored by a simulation.

Keywords: nested covariance models, maximum likelihood, error of EnKF

1 Introduction

Estimating of large covariance matrices from small samples is an important
problem in many fields, including spatial statistics, genomics, and ensemble
filtering. One of the prominent applications is data assimilation, where a prior
estimate of a random vector (usually representing a system state) is adjusted
in order to be more consistent with current observations. The revised estimate
is then plugged into a time-evolution model as an initial condition for the
future time prediction. This approach, known as filtering, is used in many
fields including meteorological predictions. A characteristic feature of this
application is a large dimension of the system state (millions or larger), which
results in high computational cost. One algorithm that deals with this problem
is the Ensemble Kalman filter (EnKF), which approximates the mean and the
covariance of the state vector from an ensemble. However, due to the high
computational cost, this ensemble is always very small compared to the state
dimension, and the approximation is very poor. In this contribution, we study
improved estimation of the covariance matrix from a small ensemble, and its
behaviour in high-dimensional EnKF.
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In particular, we consider a very special type of sparse approximation of
a covariance matrix in spectral space, based on nested maximum likelihood
models for diagonal matrices. The improved covariance estimator seems to
have a positive effect in data assimilation, which is illustrated by a simulation.

2 Hierarchical maximum likelihood estimators

Suppose XN = [X1, . . . ,XN ] is a random sample from a distribution on Rn
with density f (x,θ) with unknown parameter vector θ in a parameter space
Θ ⊂ Rp. The maximum likelihood estimator (MLE) θ̂N of the true parameter

θ0 is defined by maximizing the log-likelihood ` (θ|XN ) =
N∑
i=1

log f (Xi,θ) .

Further assume a hierarchical structure of the parameter space,

θ0 ∈ Ψ ⊂ Φ ⊂ Θ,

where Ψ ⊂ Rm, Φ ⊂ Rk, m ≤ k ≤ p. That is, θ can be parametrized by
a smaller number of parameters. We assume that the map ϕ 7→ θ(ϕ) is
one-to-one from Φ to Θ and continuously differentiable. Further assume that
the associated Jacobi matrix ∇ϕθ(ϕ) =

{
∂θi

∂ϕj

}
has full rank for all ϕ ∈ Φ.

We make analogous assumptions about the map ψ 7→ θ(ψ) as well. Moreover,
assume that θ0 = θ(ϕ0) = θ(ψ0) is an interior point of Ψ.

We will also adopt the usual assumptions in the maximum likelihood theory:
(i) the density f determines the parameter θ uniquely in the sense that
f(x,θ1) = f(x,θ2) a.e. if and only if θ1 = θ2, and (ii) f (x,θ) is a sufficiently
smooth function of x and θ (see [6] for details).

Under these assumptions, the error of the estimates is asymptotically normal
√
N
(
θ (ϕ̂N )− θ0) d−→ Np

(
0, Qθ(ϕ0)

)
as N →∞, (1)

√
N
(
θ
(
ψ̂N

)
− θ0

)
d−→ Np

(
0, Qθ(ψ0)

)
as N →∞. (2)

The matrices Qθ(ϕ0) and Qθ(ψ0) represent asymptotic variances of the param-
eters. These matrices are singular, but they can be understood as inverses
of Fisher information matrices in a generalized sense. Their exact forms are
given in [7].

The next theorem shows that for any two nested subspaces Φ and Ψ of the
parameter space containing the true parameter, the asymptotic covariance
matrices of the MLE are ordered in the same way. Hence, by confining the
parameters to a smaller subspace, we can only improve the estimator.
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Theorem 1 ([7]). Under the assumptions listed previously, the matrix Qθ(ψ0)−
Qθ(ϕ0) is positive semidefinite (denoted as Qθ(ϕ0) ≤ Qθ(ψ0)).

In addition, if U ∼ Np
(
0, Qθ(ϕ0)

)
and V ∼ Np

(
0, Qθ(ψ0)

)
are random

vectors with the asymptotic distributions of the estimates θ (ϕ̂N ) and θ(ψ̂N ),
then

E |U |2 = 1
N

TrQθ(ϕ0) ≤
1
N

TrQθ(ψ0) = E |V |2 , (3)

where |V | =
(
V >V

)1/2 is the standard Euclidean norm in Rp.

2.1 One specific hierarchical model for a covariance matrix

Consider three particular nested models for a diagonal covariance matrix. Such
models appear to be useful in meteorological practice but more about our
motivation will be said in the next section. The models have the form

• D(n) = diag{di, i = 1, . . . , n}

• D(3) = diag{(c1 − c2λi)−1(−λi)−α, i = 1, . . . , n}

• D(2) = diag{c(−λi)−α, i = 1, . . . , n},

with {λi}ni=1 being the eigenvalues of a two-dimensional Laplace operator. The
superscripts designate the number of parameters of each model. Under the
normality assumption, all these parameters can be estimated from a random
sample by the maximum likelihood method. Let D̂(n), D̂(3) and D̂(2) be the
resulting estimates. Notice that D̂(n) is formed simply by the diagonal of sample
covariance. The asymptotic hierarchical structure of cov(D̂(n)), cov(D̂(3)) and
cov(D̂(2)) is theoretically described in the previous section. The exact form of
these estimators and their Fisher information matrices can be found in [7].

However, it is difficult to say something general about the MLEs based on
small samples (although they are usually more of interest).

The simulations reported in [7] suggest that the hierarchical structure of
the error (3) persists also for small samples. Here we use the hierarchical
covariance models in data assimilation.

3 Covariance estimators in data assimilation

Our main objective is to demonstrate the positive effect of the improved
covariance estimators D̂(3) and D̂(2) in data assimilation. First, let us briefly
recall the Ensemble Kalman Filter (EnKF) [2], in the simple case when
the whole state is observed. At the beginning, the distribution of the true
state vector Xt is represented by a “forecast ensemble” X1

f , . . . ,X
N
f . The
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sample covariance of the forecast ensemble is denoted Ĉf . Using the perturbed
observations y1, . . . ,yN (whose error has covariance R), the forecast ensemble is
adjusted and results in an “analysis ensemble” X1

a, . . . ,X
N
a , which is supposed

to be “closer” to Xt. Its sample covariance is denoted Ĉa. The process is
governed by the following equations:

Xj
a = Xj

f + Ĉf

(
Ĉf +R

)−1 (
yj −Xj

f

)
j = 1, . . . , N (4)

Ĉa =
(
I − Ĉf

(
Ĉf +R

)−1
)
Ĉf . (5)

Each member of the analysis ensemble is then pushed forward in time by a
function η(·), which represents the evolution of the process X in time. This
shifted ensemble becomes the forecast, and the whole cycle runs all over again.

It is possible to represent the covariance matrix Ĉf in spectral space [1].
Under the assumption of covariance stationarity, the spectral covariance matrix
is diagonal with variances of the coefficients of the expansion of the state in
the spectral basis. Filtering methods that take advantage of this result and
perform the whole data assimilation process in spectral space, using only
the diagonal of spectral sample covariance matrix for Ĉf , were studied in [4].
Under the normality assumption, this corresponds to improving the spectral
sample covariance by using the maximum likelihood estimator D̂(n) from
Subsection 2.1. The question is, whether the filter will perform better when
using even more precise estimators like D̂(3) and D̂(2). The improvement can
be achieved by searching for the MLE in a correct subspace (or close to it).
However, based on climatological data, the power model D̂(2) seems to be
reasonable [3].

The critical point of every filtering method is its long-time behaviour and
stability, especially for a small ensemble. In the case of traditional EnKF
(given by equation (4) and (5)), the filter error does not grow faster than
exponentially for a fixed ensemble size [5]. The question is, whether the upper
bound for the filter error can be improved by using an improved covariance
estimator that comes from the right subspace. This is the subject of our current
research. The following simulation suggests that the answer may be positive.

The simulation setting was as follows. First, an initial forecast ensemble
of size N = 5 and the initial true system state were generated from Nn(0, C)
with n = 100 and C = FDF>, where F is a Fourier transform and D =
diag{c(−λi)−α, i = 1, . . . , n} with c = 50 and α = 1.5. In each cycle, the
observations yj = Xt+ξj were generated with ξj ∼ Nn(0, R) and R = 0.0064·I
and then assimilated with the forecast ensemble. The analysis part was done
in the spectral space, following [4], where the theoretical covariance matrix Df

is assumed to be diagonal. After the assimilation part, the analysis ensemble
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Figure 1: Mean square errors of the analysis ensemble mean.

was propagated in time by the model η(Xa) = AXa + b with A = 0.9 · I
and b ∼ Nn(0, C). The cycle consisting of analysis and propagation step then
runs all over again. Three parallel filters were run with distinct estimators of
Df used in the analysis step. The estimators were D̂(n)

f (denoted sam), D̂(3)
f

(MLE 3p) and D̂
(2)
f (MLE 2p).

In each of 50 cycles, the analysis ensemble was summarized into its mean
X̄a = 1

N

∑N
j=1X

j
a and the mean square error

1
n

n∑

i=1

(
X̄j
a(i)−Xt(i)

)2

was plotted for every cycle. We denoted by X̄j
a(i) the entries of X̄j

a. As we
can see at Fig. 1, the analysis that uses the more precise covariance estimator
is closer to the true state vector (in terms of MSE). However, the performance
of the analysis mean is not the only criterion. The stability of the analysis
covariance Ca is also important. In Fig. 2, we can see a comparison of spectral
representations of four matrices. The true filtering covariance descents from
the original covariance C by propagation in time and by assimilation using
the expression (5) (where Ĉf is substituted by the matrix Cf resulting from
the time-propagation step). The other three matrices are distinct estimates of
Df based on the analysis ensemble after the last cycle. The estimate based
on sample covariance is very rough. The MLEs follow the proper trend and
provide stable estimates.

This short simulation indicates that the error of the EnKF is smaller when a
better covariance estimate is used while the analysis covariance is stable. The
theoretical background of this effect is a subject of further research.

Acknowledgements: This work was supported by the grant SVV 2017 No.
260454 and by the U.S. National Science Foundation under grant DMS-1216481.
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Figure 2: Spectral representations of the true filtering covariance and the
analysis covariance matrices (the first 40 elements).
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Methods for bandwidth detection in kernel
conditional density estimations
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This contribution is focused on the kernel conditional density estimations
(KCDE). The estimation depends on the smoothing parameters which in-
fluence the final density estimation significantly. This is the reason why a
requirement of any data-driven method is needed for bandwidth estimation.
In this contribution, the cross-validation method, the iterative method and
the maximum likelihood approach are conducted for bandwidth selection of
the estimator. An application on a real data set is included and the proposed
methods are compared.

Keywords: kernel conditional density estimation, bandwidth detection, cross-
validation method, iterative method, maximum likelihood method

Introduction

Kernel smoothing techniques belong to the most popular non-parametric
techniques for data interpolation, especially for its simple usage and no strictly
limiting requirements. Conditional density estimations offer the comprehensive
information about the data structure – regression models only the conditional
expectation while conditional density includes even the variability and the
whole data distribution.
The estimator depends on the unknown parameters, called the smoothing
parameters or bandwidths. They influence the quality of the estimation
significantly, this is the reason why so much attention is given to the bandwidth
determination. The optimal values of the smoothing parameters depend on
the unknown conditional and marginal density, thus there is a necessity to
develop an automatic data-driven bandwidth selectors. In this contribution,
the widely used cross-validation method is supplemented with the iterative
method and the leave-one-out maximum likelihood method.

∗Corresponding author: xkonecn3@math.muni.cz
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1 Statistical properties of the Nadaraya-Watson
estimator of conditional density

The basic building block of kernel smoothing is a kernel function, which plays
a role of weighting function. Let K be a real valued function satisfying

1. K ∈ Lip[−1, 1], i. e. |K(x)−K(y)| ≤ L|x− y|, ∀x, y ∈ [−1, 1], L > 0,

2. supp(K) = [−1, 1],

3. moment conditions:
∫ 1

−1
K(x) dx = 1,

∫ 1

−1
xK(x) dx = 0,

∫ 1

−1
x2K(x) dx = β2(K) 6= 0.

Such a function K is called a kernel of order 2.
Conditional density models the probability of a random variable Y given a
fixed observation X = x. The Nadaraya-Watson estimator of conditional
density takes the form

f̂NW (y|x) = 1
hy

n∑

i=1
wNW

i (x)K
(
y − Yi

hy

)
, (1)

where wNW
i (x) =

K
(

x−Xi
hx

)
n∑

j=1

K
( x−Xj

hx

) is a weight function in the point x, hx, hy > 0

are the smoothing parameters.
The statistical properties of the estimator are the rudiments for appraisal

of suitability of the estimator and determination of the optimal values of
bandwidths.
The Asymptotic Bias (AB) and the Asymptotic Variance (AV) of the Nadaraya-
Watson estimator are given by Hyndman et al. ([4]) with the expressions

AB
{
f̂NW (y|x)

}
= 1

2h
2
xβ2(K)

[
2g
′(x)
g(x) + ∂2f(y|x)

∂x2

]
+ 1

2h
2
yβ2(K)∂

2f(y|x)
∂y2 ,

AV
{
f̂NW (y|x)

}
= R2(K)f(y|x)

nhxhyg(x) ,

where R(K) =
∫
K2(t) dt, g(x) is a marginal density of a random variable X.

The global quality of the estimate is measured by the Mean Integrated Squared
Error (MISE) in the form

MISE
{
f̂NW (·|·)

}
=
∫∫

E
{(

f̂NW (y|x)− f(y|x)
)2
}
g(x) dx dy.
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The main term of MISE
{
f̂NW (·|·)

}
, the Asymptotic Mean Integrated Squared

Error (AMISE), is of the form

AMISE
{
f̂NW (·|·)

}
= c1
nhxhy

+ c2h
4
x + c3h

4
y + c4h

2
xh

2
y,

where

c1 =
∫
R2(K) dx,

c2 =
∫∫

β2
2(K)

4

(
2g
′(x)
g(x)

∂f(y|x)
∂x

+ ∂2f(y|x)
∂x2

)2
g(x) dy dx,

c3 =
∫∫

β2
2(K)

4

(
∂2f(y|x)
∂y2

)2
g(x) dy dx,

c4 =
∫∫

β2
2(K)

2

(
2g
′(x)
g(x)

∂f(y|x)
∂x

+ ∂2f(y|x)
∂x2

)(
∂2f(y|x)
∂y2

)
g(x) dy dx.

The optimal bandwidths
(
h∗x, h

∗
y

)
minimize AMISE

(h∗x, h∗y) = arg min
(hx,hy)

AMISE
{
f̂NW (·|·)

}
,

where the nonequations an−1/6 ≤ hx ≤ bn−1/6 and cn−1/6 ≤ hy ≤ dn−1/6 are
held for 0 < a < b <∞ and 0 < c < d <∞. The optimal values of smoothing
parameters are derived by differentiating of AMISE, setting the derivatives to
0 and making several algebraic simplifications. They are given by Hyndman et
al. in the paper [4] as follows

h∗x = n−1/6c
1/6
1

[
4
(
c5

3
c4

)1/4
+ 2c5

(
c3
c4

)3/4]−1/6
,

h∗y = h∗x

(
c3
c4

)1/4
= n−1/6c

1/6
1

[
4
(
c5

4
c3

)1/4
+ 2c5

(
c4
c3

)3/4]−1/6
.

2 Methods for bandwidth detection

The optimal values of the smoothing parameters depend on the unknown
conditional and marginal density. This is the reason why any data-driven
method for the estimation of them is needed.
One of the most common methods for choosing the bandwidths is the cross-
validation method introduced by Fan and Yim [2] and Hansen [3]. The idea
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of the method consists in minimization of the proper estimate of the Integrate
Squared Error (ISE) represented by the cross-validation function

CV (hx, hy) = 1
n

n∑

i=1

∫
f̂−i,NW (y|Xi)2 dy − 2

n

n∑

i=1
f̂−i,NW (Yi|Xi) ,

where f̂−i,NW (y|x) is the estimate in the pair of points (Xi, Yi) using the
points {(Xj , Yj) , j 6= i}. Thus, the estimates of bandwidths are given by

(ĥCV
x , ĥCV

y ) = arg min
(hx,hy)

CV (hx, hy).

The next proposed method is the iterative method suggested by Konečná
and Horová ([5]). The method is based on a suitable estimation of AMISE
which can be expressed by a sum of the Asymptotic Integrated Variance
(AIV) and the Asymptotic Integrated Squared Bias (AISB). The relation (2)
is derived by differentiating of AMISE, setting the derivatives to 0, and by
replacing the terms by their estimations:

AIV
{
f̂(·|·)

}
− 2ÎSB

{
f̂(·|·)

}
= 0. (2)

The term ÎSB
{
f̂(·|·)

}
is an approximation of the AISB

{
f̂(·|·)

}
term and it

is of the form

ÎSB
{
f̂(·|·)

}
=
∫∫ (

b̂ias
{
f̂(y|x)

})2
g(x) dx dy

=
∫∫ 


∑
i

Khx

√
2 (x−Xi)Khy

√
2 (y − Yi)

∑
i

Khx

√
2 (x−Xi)

− f̂NW (y|x)




2

g(x) dxdy.

The supplemented equation ĥy = ĉĥx to the equation (2) is represented by
a relation ĉ between the values of the smoothing parameters, ĉ is given by
the reference rule suggested by Bashtannyk and Hyndman in the paper [1].
The estimations of the smoothing parameters are derived as a solution of the
system of two nonlinear equations (2) and the equation ĥy = ĉĥx.

The last suggested method is the leave-one-out maximum likelihood
method which proceeds with the maximum likelihood method, a statistical
standard procedure for estimating the unknown parameters. We consider
a random vector (X,Y) with the independent and identically distributed
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observations (Xi, Yi), i = 1, . . . , n of the unknown conditional density. We
define the modified likelihood function

L (hx, hy | X,Y) =
n∏

j=1
f̂−j,NW (Yj | Xj) .

The modification of the classical likelihood approach consists in leaving one
observation out. The estimations of the smoothing parameters are given by
maximization of L (hx, hy | X,Y), i.e.

(ĥLx , ĥLy ) = arg min
(hx,hy)

L (hx, hy | X,Y) .

3 Application on a real data

For comparison of the proposed methods, the airquality data from the
datasets package in R ([6]) are concerned. The data describe daily air
quality in New York, May to September 1973. The estimation of mean ozone
concentration in parts per billion, given the maximum daily temperature in
degrees Fahrenheit is focused on. There is 153 observations in total, in fact,
we include only 116 observation because of some missing values.
The cross-validation method (CV), the iterative method (IT) and the leave-
one-out maximum likelihood (ML) are used for bandwidth detection. The
values of estimated bandwidths and the computational times are given in the
Table 1.

Table 1: Estimates of the smoothing parameters and computational times for
methods used for bandwidth determination.

method ĥx ĥy computational time [s]
CV 1.845 7.638 182
IT 6.289 15.276 67.6
ML 2.517 10.017 31.3

As it can be seen, the CV method gives the most undersmoothed estimation
due to small values of the smoothing parameters, whereas the IT method
gives the most oversmoothed estimation. It seems that the ML gives the best
results, supported by the shortest computational time. The IT method is the
fastest – it takes about 30 seconds, the computational difficulty of the other
two methods is evident. The IT method takes less than one third while the
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ML method takes even one sixth of the CV’s computational time.
It is important to emphasize that these results are valid for this real-data
application. Several simulation studies should be executed for the proper
assessment of the proposed methods, although this exceeds the extent of this
contribution.

4 Conclusion

In this contribution, the methods for bandwidth determination were focused on.
The classical approach for bandwidth detection, the cross-validation method,
was supplemented with two suggested methods – the iterative and the leave-
one-out maximum likelihood method.
These approaches could be extended to the other types of kernel conditional
density estimations which have not been mentioned in this contribution. Future
work could also involve variable bandwidths, on the other hand, their theoretical
aspect as well as computational implementation would be quite difficult.

Acknowledgements: The research was supported by the Czech Science
Foundation no. GA15-06991S.
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Inference on covariance matrices and operators
using concentration inequalities
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In the modern era of high and infinite dimensional data, classical statistical
methodology is often rendered inefficient and ineffective when confronted
with such big data problems as arise in genomics, medical imaging, speech
analysis, and many other areas of research. Many problems manifest when
the practitioner is required to take into account the covariance structure
of the data during his or her analysis, which takes on the form of either a
high dimensional low rank matrix or a finite dimensional representation of
an infinite dimensional operator acting on some underlying function space.
Thus, we propose using tools from the concentration of measure literature
to construct rigorous descriptive and inferential statistical methodology for
covariance matrices and operators. A variety of concentration inequalities are
considered, which allow for the construction of nonasymptotic dimension-free
confidence sets for the unknown matrices and operators. Given such confidence
sets a wide range of estimation and inferential procedures can be and are
subsequently developed.

Keywords: Sparse Matrix, Functional Data Analysis, Log Sobolev Inequality,
Talagrand’s Inequality, Confidence Sets

1 Overview

Concentration inequalities are a general category of results from geometry,
functional analysis, and probability theory that control the tail behaviour
of probability measures. In recent years, they have proved invaluable to
statisticians due to their non-asymptotic dimension-free properties, which
makes them particularly suitable for estimation and inference on finite samples
of data living high or infinite dimensional space. Overviews of such results can
be found in the monographs [3, 8, 11]. This manuscript introduces some of the
author’s doctoral research into using concentration inequalities for statistical
estimation and inference on covariance matrices and operators.

∗Corresponding author: ak852@cam.ac.uk or kashlak@ualberta.ca
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1.1 Definitions and notation

Definition 1 (Empirical Covariance Matrix). Let X1, . . . , Xn ∈ Rd be iid
realizations of some random variable X ∈ Rd with unknown covariance matrix
Σ ∈ Rd×d. Then, the sample or empirical estimate for Σ is

Σ̂ = 1
n

n∑

i=1
(Xi − X̄)(Xi − X̄)T

where X̄ = n−1∑n
i=1Xi is the sample mean of the data.

Definition 2 (Empirical Covariance Operator). For I ⊆ R, let f1, . . . , fn ∈
L2(I) be iid realizations of some random function f ∈ L2(I) with unknown
covariance operator Σ ∈ Op(L2). Then, the sample or empirical estimate for
Σ is

Σ̂ = 1
n

n∑

i=1
(fi − f̄)⊗ (fi − f̄) = 1

n

n∑

i=1
(fi − f̄)⊗2 = 1

n

n∑

i=1

〈
(fi − f̄), ·

〉
(fi − f̄)

where f̄ = n−1∑n
i=1 fi is the sample mean of the data.

Definition 3 (p-Schatten norm for matrices). For an arbitrary matrix Σ ∈
Rk×l and p ∈ (1,∞), the p-Schatten norm is

‖Σ‖pp = tr
(

(ΣTΣ)p/2
)

= ‖ν‖p`p =
min{k,l}∑

i=1
νpi

where ν = (ν1, . . . , νmin{k,l}) is the vector of singular values of Σ and where
‖·‖`p is the standard `p norm in Rd. In the covariance matrix case where
Σ ∈ Rd×d is symmetric and positive definite, ‖Σ‖pp = tr (Σp) = ‖λ‖p`p where λ
is the vector of eigenvalues of Σ.

When p =∞, we have the standard operator norm on Euclidean space

‖Σ‖∞ = sup
v∈Rd,‖v‖`2 =1

‖Σv‖`2 = sup
v∈Rd,‖v‖`2 =1

vTΣv.

For covariance matrices, this coincides with the maximal eigenvalue of Σ.

Definition 4 (p-Schatten norm for operators). Given two separable Hilbert
spaces H1 and H2, a bounded linear operator Σ : H1 → H2, and some
p ∈ [1,∞), then the p-Schatten norm is ‖Σ‖pp = tr

(
(Σ∗Σ)p/2

)
. For p =∞, the

Schatten norm is the operator norm: ‖Σ‖∞ = supf∈H1(‖Σf‖H2
/‖f‖H1

). In the
case that Σ is compact, self-adjoint, and trace-class, then given the associated
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eigenvalues {λi}∞i=1, the p-Schatten norm coincides with the standard `p norm
of the eigenvalues:

‖Σ‖pp =
{
‖λ‖p`p =

∑∞
i=1|λi|

p
, p ∈ [1,∞)

maxi∈N|λi|, p =∞

2 Covariance matrices

Given X1, . . . , Xn ∈ Rd, past studies have shown that the empirical estimate
for the covariance matrix, Definition 1, is a very poor estimator when the
underlying true Σ is high dimensional, d� n, and sparse meaning that most
of the off-diagonal entries are zero or negligible. Hence, much research has
gone into better estimation techniques [1, 2, 5, 15, 14]. In [10], we propose
using concentration inequalities to construct a non-asymptotic confidence set
for the empirical estimate and then search the confidence set in order to find
an improved estimator.

Let d(·, ·) be some metric measuring the distance between two covariance
matrices, and let ψ : R→ R be monotonically increasing. Then, the general
form of the concentration inequalities is

P
(
d(Σ0, Σ̂emp) ≥ Ed(Σ0, Σ̂emp) + r

)
≤ e−ψ(r),

which is a bound on the tail of the distribution of d(Σ0, Σ̂emp) as it deviates
above its mean. Thus, to construct a (1 − α)-confidence set, the variable
r = rα is chosen such that exp(−ψ(rα)) = α. Then, choose a Σ̂sp such that
d(Σ̂sp, Σ̂emp) ≤ rα.

The proposed search procedure is to sequentially set to zero the small-
est entries in Σ̂emp while remaining inside the rα-ball. The metric used is
d(Σ0, Σ̂emp) = ‖Σ0 − Σ̂emp‖1/2p where ‖·‖p is the p-Schatten norm from Defini-
tion 3. This metric is shown to be Lipschitz n−1/2 with respect to Euclidean
distance in Rd×n.

In [10], three types of distributional assumptions are considered: log concave
measures; sub-exponential measures; bounded random variables. In summary,
applying our methodology to log concave measures, which include the multi-
variate Gaussian distribution, yielded excellent theoretical and experimental
results. Our method is particularly good at support recovery or ”sparsistency”
in this case. For sub-exponential measures, the concentration inequalities
do not yield nice theoretical results, but the methodology still gives good
performance in simulation studies. This approach fails in the bounded random
variable case as the resulting confidence sets are not dimension-free.
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3 Covariance operators

In the functional data setting, f1, . . . , fn ∈ L2(I) are iid random functions
with I ⊆ R. Similarly to the high dimensional case, covariance operators are
of critical importance to inference and hypothesis testing. For example, the
development of k-sample tests for the equality of covariance is a major area of
research [4, 7, 12, 13].

In [9], we propose our own k-sample test for the equality of covariance
by first using Talagrand’s concentration inequality [16] in the Banach space
setting to construct confidence sets for each of the covariance operator. For
some desired p-Schatten norm, Definition 4, ‖·‖p, with p ∈ [1,∞) and with
conjugate q = p/(p− 1), we require the following terms, which correspond to
the distance between the empirical covariance estimate and the true covariance
operator and a weak variance term for this random variable:

Z =
∥∥∥∥∥

1
n

n∑

i=1
fi ⊗ fi − E (fi ⊗ fi)

∥∥∥∥∥
p

=
∥∥∥Σ̂− Σ

∥∥∥
p

σ2 = 1
n

n∑

i=1
sup
‖Π‖q≤1

E
〈
f⊗2
i − Ef⊗2

i ,Π
〉2
.

In the above equation, the supremum is to be taken over a countably dense
subset of the unit ball of Π ∈ Op(L2). For some U ≥ ‖f⊗2

i ‖
2
L2 and vn =

2UEZ + nσ2, the initial level (1− α) confidence set constructed is

Cn,1−α =
{

Σ : Z ≤ EZ +
√
−2vn log(2α)/n− U log(2α)/(3n)

}
.

To make this confidence set usable on real data, the Rademacher average
Rn = n−1∑n

i=1 εi((fi − f̄)⊗2 − Σ̂), where P (εi = 1) = P (εi = −1) = 0.5 will
be used as a proxy for the unknown EZ.

In [9], this is not only applied to k-sample tests for equality of covariance, but
also to the classification and clustering of functional data. This methodology
is applied to a set of phoneme data detailed in [6], which is a collection of 400
log-periodograms for each of five different phonemes: /A/ as in the vowel of
“dark”; /O/ as in the first vowel of “water”; /d/ as in the plosive of “dark”; /i/
as in the vowel of “she”; /S/ as in the fricative of “she”. Each curve contains
the first 150 frequencies from a 32 ms sound clip sampled at a rate of 16-kHz.
Comparisons of our concentration-based methodology with other methods of
classification and clustering can be found in Tables 1 and 2, respectively.
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/A/ /O/ /d/ /i/ /S/
CoM 76.9 76.8 96.6 98.5 99.4
KNN 72.4 79.1 98.5 97.4 100.
Kernel 72.0 80.5 98.4 97.2 99.9
GLM 79.0 72.3 98.2 95.9 99.2
Tree 70.8 69.4 95.6 87.8 92.6

Table 1: Percentage of correct classification of the five phonemes against
the five methods: our concentration of measure approach (CoM);
k-nearest-neighbours (KNN); kernel method (Kernel); generalized
linear model (GLM); and regression trees (Tree).

Concentration k-means
Cluster A B C D E A B C D E
/A/ 281 119 0 0 0 281 119 0 0 0
/O/ 125 273 1 1 0 126 272 1 1 0
/d/ 0 0 384 15 1 0 2 386 10 2
/i/ 1 0 1 393 5 1 3 2 381 13
/S/ 0 0 0 3 397 0 0 0 2 398

Table 2: Clustering 2000 phoneme curves into 5 clusters. Similar results
achieved by both the concentration and k-means methods.
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The branching process theory is widely used to describe a population dynamics
in which particles live and produce other particles through their life, according
to given stochastic birth and death laws. The theory of General Branching
Processes (GBP) presents a continuous time model in which every woman
has random life length and gives birth to children in random intervals of time.
The flexibility of the GBP makes it very useful for modelling and forecasting
human population. This paper is a continuation of previous developments in
the theory, necessary to model the specifics of human population, and presents
their application in forecasting the population age structure of Bulgaria. It also
introduces confidence intervals of the forecasts, calculated by GBP simulations,
which reflect both the stochastic nature of the birth and death laws and the
branching process itself. The simulations are also used to determine the main
sources of risk to the forecast.

∗Corresponding author: plamentrayanov@gmail.com



Fréchet means and Procrustes analysis in
Wasserstein space

Yoav Zemel∗1 and Victor Panaretos1

1Ecole polytechnique fédérale de Lausanne

We consider three interlinked problems in stochastic geometry: (1) constructing
optimal multicouplings of random vectors; (2) determining the Fréchet mean
of probability measures in Wasserstein space; and (3) registering collections
of randomly deformed spatial point processes. We demonstrate how these
problems are canonically interpreted through the prism of the theory of optimal
transportation of measure on Rd. We provide explicit solutions in the one
dimensional case, consistently solve the registration problem and establish
convergence rates and a (tangent space) central limit theorem for Cox processes.
When d > 1, the solutions are no longer explicit and we propose a steepest
descent algorithm for deducing the Fréchet mean in problem (2). Supplemented
by uniform convergence results for the optimal maps, this furnishes a solution
to the multicoupling problem (1). The latter is then utilised, as in the case
d = 1, in order to construct consistent estimators for the registration problem
(3). While the consistency results parallel their one-dimensional counterparts,
their derivation requires more sophisticated techniques from convex analysis.
This is joint work with Victor M. Panaretos

∗Corresponding author: yoav.zemel@epfl.ch



Predict extreme influenza epidemics

Maud Thomas∗1 and Holger Rootzén1

1Chalmers University of Technology
2Université Pierre et Marie Curie

Influenza viruses are responsible for annual epidemics, causing more than
500,000 deaths per year worldwide. A crucial question for resource planning
in public health is to predict the morbidity burden of extreme epidemics. We
say that an epidemic is extreme whenever the influenza incidence rate exceeds
a high threshold for at least one week. Our objective is to predict whether an
extreme epidemic will occur in the near future, say the next couple of weeks.

The weekly numbers of influenza-like illness (ILI) incidence rates in France
are available from the Sentinel network for the period 1991-2017. ILI incidence
rates exhibit two different regimes, an epidemic regime during winter and a
non-epidemic regime during the rest of the year. To identify epidemic periods,
we use a two-state autoregressive hidden Markov model.

A main goal of Extreme Value Theory is to assess, from a series of ob-
servations, the probability of events that are more extreme than those pre-
viously recorded. Because of the autoregressive structure of the data, we
choose to fit one of the mul- tivariate generalized Pareto distribution mod-
els proposed in Rootzén et al. (2016a) [Multivariate peaks over thresh-
old models. arXiv:1603.06619v2]; see also Rootzén et al. (2016b) [Peaks
over thresholds modeling with multivariate generalized Pareto distributions.
arXiv:1612.01773v1]. For these models, explicit densities are given, and for-
mulas for conditional probabilities can then be deduced, from which we can
predict if an epidemic will be extreme, given the first weeks of observation.

∗Corresponding author: maud.thomas@upmc.fr



Controlled branching processes in Biology: a
model for cell proliferation

Carmen Minuesa Abril∗1, Miguel González Velasco1, and Inés María del
Puerto García1

1University of Extremadura

Branching processes are relevant models in the development of theoretical
approaches to problems in applied fields such as, for instance, growth and
extinction of populations, biology, epidemiology, cell proliferation kinetics,
genetics and algorithm and data structures. The most basic model, the so-
called Bienaymé-Galton-Watson process, consists of individuals that reproduce
independently of the others following the same probability distribution, known
as offspring distribution. A natural generalization is to incorporate a random
control function which determines the number of progenitors in each generation.
The resulting process is called controlled branching process.

In this talk, we deal with a problem arising in cell biology. More specifically,
we focus our attention on experimental data generated by time-lapse video
recording of cultured in vitro oligodendrocyte cells. In A.Y. Yakovlev et al.
(2008) (Branching Processes as Models of Progenitor Cell Populations and
Estimation of the Offspring Distributions, *Journal of the American Statistical
Association*, 103(484):1357–1366), a two-type age dependent branching process
with emigration is considered to describe the kinetics of cell populations. The
two types of cells considered are referred as type T1 (immediate precursors
of oligodendrocytes) and type T2 (terminally differentiated oligodendrocytes).
The reproduction process of these cells is as follows: when stimulating to divide
under in vitro conditions, the progenitor cells are capable of producing either
their direct progeny (two daughter cells of the same type) or a single, terminally
differentiated nondividing oligodendrocyte. Moreover, censoring effects as a
consequence of the migration of progenitor cells out of the microscopic field of
observation are modelled as the process of emigration of the type T1 cells.

In this work, we propose a two-type controlled branching process to describe
the embedded discrete branching structure of the age-dependent branching
process aforementioned. We address the estimation of the offspring distribution
of the cell population in a Bayesian outlook by making use of disparities.
The importance of this problem yields in the fact that the behaviour of

∗Corresponding author: cminuesaa@unex.es



these populations is strongly related to the main parameters of the offspring
distribution and in practice, these values are unknown and their estimation is
necessary. The proposed methodology introduced in M. González et al. (2017)
(Robust estimation in controlled branching processes: Bayesian estimators via
disparities. *Work in progress*), is illustrated with an application to the real
data set given in A.Y. Yakovlev et al. (2008).



Best Unbiased Estimators for Doubly
Multivariate Data

Arkadiusz Kozioł∗1, Roman Zmyślony1, Ricardo Leiva2, Miguel
Fonseca4, and Anuradha Roy3

1Faculty of Mathematics, Computer Science and Econometrics University of Zielona
Góra, Szafrana 4a, 65-516 Zielona Góra, Poland

2Departamento de Matemática F.C.E., Universidad Nacional de Cuyo, 5500
Mendoza, Argentina

3Department of Management Science and Statistics The University of Texas at San
Antonio San Antonio, TX 78249, USA

4Centro de Matemática e Aplicações Universidade Nova de Lisboa Monte da
Caparica, 2829-516 Caparica, Portugal

The article addresses the best unbiased estimators of the block compound
symmetric covariance structure for m-variate observations with equal mean
vector over each level of factor or each time point (model with structured mean
vector). Under multivariate normality, the free-coordinate approach is used
to obtain unbiased linear and quadratic estimates for the model parameters.
Optimality of these estimators follows from sufficiency and completeness of
their distributions. Additionally, strong consistency is proven. The properties
of the estimators in the proposed model are compared with the ones in the
model with unstructured mean vector (the mean vector changes over levels of
factor or time points).

∗Corresponding author: a.koziol@wmie.uz.zgora.pl



Parameter Estimation for Discretely Observed
Infinite-Server Queues with Markov-Modulated

Input

Mathisca de Gunst2, Bartek Knapik2, Michel Mandjes1, and Birgit
Sollie∗1

1Universiteit van Amsterdam
2Vrije Universiteit Amsterdam

The Markov-modulated infinite-server queue is a queueing system with infinitely
many servers, where the arrivals follow a Markov-modulated Poisson process
(MMPP), i.e. a Poisson process with rate modulating between several values.
The modulation is driven by an underlying and unobserved continuous time
Markov chain {Xt}t≥0. The inhomogeneous rate of the Poisson process, λ(t),
stochastically alternates between d different rates, λ1, . . . , λd, in such a way
that λ(t) = λi if Xt = i, i = 1, . . . , d.
We are interested in estimating the parameters of the arrival process for

this queueing system based on observations of the queue length at discrete
times only. We assume exponentially distributed service times with rate µ,
where µ is time-independent and known. Estimation of the parameters of the
arrival process has not yet been studied for this particular queueing system.
Two types of missing data are intrinsic to the model, which complicates the
estimation problem. First, the underlying continuous time Markov chain in the
Markov-modulated arrival process is not observed. Second, the queue length is
only observed at a finite number of discrete time points. As a result, it is not
possible to distinguish the number of arrivals and the number of departures
between two consecutive observations.

In this talk we show how we derive an explicit algorithm to find maximum
likelihood estimates of the parameters of the arrival process, making use of the
EM algorithm. Our approach extends the one used in Okamura et al. (2009),
where the parameters of an MMPP are estimated based on observations of the
process at discrete times. However, in contrast to our setting, Okamura et al.
(2009) do not consider departures and therefore do not deal with the second
type of missing data. We illustrate the accuracy of the proposed estimation
algorithm with a simulation study.

∗Corresponding author: b.sollie@vu.nl



Reference: Okamura H., Dohi T., Trivedi K.S. (2009). Markovian Arrival
Process Parameter Estimation With Group Data. IEEE/ACM Transactions
on Networking. Vol. 17, No. 4, pp. 1326–1339



Modeling of vertical and horizontal variation in
multivariate functional data

Niels Olsen∗1

1Københvans Universitet

We present a model for multivariate functional data that simultaneously model
vertical and horisontal variation. Horisontal variation is modeled using warping
functions represented by latent gaussian variables. Vertical variation is modeled
using Gaussian processes using a generally applicable low-parametric covariance
structure. We devise a method for maximum likelihood estimation using a
Laplace approximation and apply it to three different data sets.

∗Corresponding author: niels.olsen@math.ku.dk



Joint Bayesian nonparametric reconstruction of
dynamical equations

Spyridon Hatjispyros1 and Christos Merkatas∗1

1Department of Mathematics, University of the Aegean, Greece

We propose a Bayesian nonparametric mixture model for the joint full re-
construction of m dynamical equations, given m observed dynamically-noisy-
corrupted chaotic time series. The method of reconstruction is based on
the Pairwise Dependent Geometric Stick Breaking Processes mixture priors
(PDGSBP) first proposed by Hatjispyros et al. (2017). We assume that each
set of dynamical equations has a deterministic part with a known functional
form i.e.

xji = gj(ϑj , xj,i−1, . . . , xj,i−lj
) + εxji

, 1 ≤ j ≤ m, 1 ≤ i ≤ nj .

under the assumption that the noise processes (εxji) are independent and
identically distributed for all j and i from some unknown zero mean process
fj(·). Additionally, we assume that a-priori we have the knowledge that the
processes (εxji

) for j = 1, . . . ,m have common characteristics, e.g. they may
have common variances or even have similar tail behavior etc. For a full
reconstruction, we would like to jointly estimate the following quantities

(ϑj) ∈ Θ ⊆ Rkj , (xj,0, . . . , xj,lj−1) ∈ Xj ⊆ Rlj ,

and perform density estimation to the m noise components (fj).
Our contention is that whenever there is at least one sufficiently large data set,

using carefully selected informative borrowing-of-strength-prior-specifications
we are able to reconstruct those dynamical processes that are responsible for
the generation of time series with small sample sizes; namely sample sizes
that are inadequate for an independent reconstruction. We illustrate the joint
estimation process for the case m = 2, when the two time series are coming
from a quadratic and a cubic stochastic process of lag one and the noise
processes are zero mean normal mixtures with common components.
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Viterbi process for pairwise Markov models

Joonas Sova∗1

1University of Tartu

My talk is based on ongoing joint work with my supervisor Jüri Lember.
We consider a Markov chain Z = {Zk}k≥1 with product state space X × Y ,

where Y is a finite set (state space) and X is an arbitrary separable metric
space (observation space). Thus, the process Z decomposes as Z = (X, Y ),
where X = {Xk}k≥1 and Y = {Yk}k≥1 are random processes taking values
in X and Y, respectively. Following citepairwise,pairwise2,pairwise3, we call
the process Z a pairwise Markov model. The process X is identified as an
observation process and the process Y , sometimes called the regime, models
the observations-driving hidden state sequence. Therefore our general model
contains many well-known stochastic models as a special case: hidden Markov
models, Markov switching models, hidden Markov models with dependent
noise and many more. The segmentation or path estimation problem con-
sists of estimating the realization of (Y1, . . . , Yn) given a realization x1:n of
(X1, . . . , Xn). A standard estimate is any path v1:n ∈ Yn having maximum
posterior probability:

v1:n = argmax
y1:n

P (Y1:n = y1:n|X1:n = x1:n).

Any such path is called Viterbi path and we are interested in the behaviour of
v1:n as n grows. The study of asymptotics of Viterbi path is complicated by
the fact that adding one more observation, xn+1 can change the whole path,
and so it is not clear, whether there exists a limiting infinite Viterbi path.

We show that under some conditions the infinite Viterbi path indeed exists
for almost every realization x1:∞ of X, thereby defining an infinite Viterbi
decoding of X, called the Viterbi process. This is done trough construction
of barriers. A barrier is a fixed-sized block in the observations x1:n that fixes
the Viterbi path up to itself: for every continuation of x1:n, the Viterbi path
up to the barrier remains unchanged. Therefore, if almost every realization of
X-process contains infinitely many barriers, then the Viterbi process exists.
Having infinitely many barriers is not necessary for existence of infinite

Viterbi path, but the barrier-construction has several advantages. One of
them is that it allows to construct the infinite path piecewise, meaning that to
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determine the first k elements v1:k of the infinite path it suffices to observe
x1:n for n big enough. Barrier construction has another great advantage:
namely, the process (Z, V ) = {(Zk, Vk)}k≥1, where V = {Vk}k≥1 denotes the
Viterbi process, is under certain conditions regenerative. This is can be proven
by, roughly speaking, applying the Markov splitting method to construct
regeneration times for Z which coincide with the occurrences of barriers.
Regenerativity of (Z, V ) allows to easily prove limit theorems to understand the
asymptotic behaviour of inferences based on Viterbi paths. In fact, in a special
case of hidden Markov model this regenerative property has already been known
to hold and has found several applications citeAV,AVacta,Vsmoothing,Vrisk,
iowa.
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