Estimates for distributions of Hölder semi-norms of random processes from spaces $\mathbb{F}_{\psi}(\Omega)$

Dmytro Zatula^{*1}

¹Taras Shevchenko National University of Kyiv

We provide estimates for distributions of semi-norms of sample functions of random processes from spaces $\mathbb{F}_{\psi}(\Omega)$, defined on a compact space and on an infinite interval $[0, \infty)$, in Hölder spaces.

Keywords: random processes, $\mathbb{F}_{\psi}(\Omega)$ spaces of random variables, moduli of continuity, Hölder spaces, semi-norms

1 Introduction

 $\mathbb{F}_{\psi}(\Omega)$ spaces of random variables and processes belonging to these spaces are investigated by Kozachenko and Mlavets' [5].

In the following we deal with estimates of distributions of Hölder semi-norms of sample functions of random processes from spaces $\mathbb{F}_{\psi}(\Omega)$, i.e. probabilities

$$\mathsf{P} \left\{ \sup_{\substack{0 < \rho(t,s) \leq \varepsilon \\ t,s \in \mathbb{T}}} \frac{|X(t) - X(s)|}{f(\rho(t,s))} > x \right\}.$$

Such estimates and assumptions under which semi-norms of sample functions of random processes from spaces $\mathbb{F}_{\psi}(\Omega)$, defined on a compact space, satisfy the Hölder condition were obtained by Zatula and Kozachenko [7]. Similar results were provided for Gaussian processes, defined on a compact space, by Dudley [3]. Buldygin and Kozachenko [2] generalized Dudley's results for random processes belonging to Orlicz spaces. Marcus and Rosen [4] obtained L^p moduli of continuity for a wide class of continuous Gaussian processes. Kozachenko et al. [6] studied the Lipschitz continuity of generalized sub-Gaussian processes and provided estimates for the distribution of Lipschitz norms of such processes. But all these problems were not considered yet for processes, defined on an infinite interval.

^{*}Corresponding author: dm.zatula@gmail.com

2 Preliminaries

Definition 1. Let $\psi(u) > 0, u \ge 1$ be some increasing function such that $\psi(u) \to \infty$ as $u \to \infty$. We say that a random variable ξ belongs to the space $\mathbb{F}_{\psi}(\Omega)$ (see [5]) if

$$\sup_{u \ge 1} \frac{(\mathsf{E}|\xi|^u)^{1/u}}{\psi(u)} \le \infty.$$

It is proved in the paper [5] that $\mathbb{F}_{\psi}(\Omega)$ is a Banach space with respect to the norm

$$\|\xi\|_{\psi} = \sup_{u \ge 1} \frac{(\mathsf{E}|\xi|^u)^{1/u}}{\psi(u)}.$$

Theorem 1 ([5]). If a random variable ξ belongs to the space $\mathbb{F}_{\psi}(\Omega)$, then

$$\mathsf{P}\{|\xi| > x\} \le \inf_{u \ge 1} \ \frac{\|\xi\|_{\psi}^{u} \cdot (\psi(u))^{u}}{x^{u}}$$

for all x > 0.

Let $\xi_1, ..., \xi_n$ be random variables belonging to the space $\mathbb{F}_{\psi}(\Omega)$. Put $\eta_n = \max_{1 \le k \le n} |\xi_k|, a_n = \max_{1 \le k \le n} ||\xi_k||_{\psi}$.

Definition 2. An $\mathbb{F}_{\psi}(\Omega)$ space has the property Z if there are monotonically non-decreasing function z(x) > 0, monotonically increasing function U(n)and the real number $x_0 > 0$ such that for all sequence of random variables $(\xi_k, k = \overline{1, n})$ from the space $\mathbb{F}_{\psi}(\Omega), \forall x > x_0$ and for all $n \ge 2$ the following holds

$$\mathsf{P}\{\eta_n > x \cdot a_n \cdot U(n)\} \le \frac{1}{n} \exp\{-z(x)\}.$$

Definition 3 ([5]). We say that a random process $X = \{X(t), t \in \mathbb{T}\}$ belongs to the space $\mathbb{F}_{\psi}(\Omega)$ if random variables X(t) belong to $\mathbb{F}_{\psi}(\Omega)$ for all $t \in \mathbb{T}$.

Definition 4 ([2]). Let (\mathbb{T}, ρ) be a metric space. The metric massiveness $N(u) := N_{(\mathbb{T}, \rho)}(u)$ is the minimal number of closed balls (defined with respect to the metric ρ) that cover \mathbb{T} and that have radiuses which do not exceed u.

Definition 5 ([2]). A function $q = \{q(t), t \in \mathbb{R}\}$ is called the modulus of continuity if $q(t) \ge 0$, q(0) = 0 and $q(t+s) \le q(t) + q(s)$ for t > 0 and s > 0.

Definition 6 ([1]). A function v(x) satisfy Hölder condition with exponent $\alpha \in (0, 1]$ if the following value is finite:

$$[v]_{\alpha,\mathbb{T}} = \sup_{\substack{t,s\in\mathbb{T}\\t\neq s}} \frac{|v(t) - v(s)|}{|t - s|^{\alpha}}.$$

Hölder space $C^{0,\alpha}(\overline{\mathbb{T}})$ is a space of all continuous functions such that the Hölder condition is satisfied with exponent α in the space \mathbb{T} .

In the present we deal with a generalization of the semi-norm $[v]_{\alpha,\mathbb{T}}$ in the space $C^{0,\alpha}(\overline{\mathbb{T}})$. Let's consider the quantity

$$[v]_{q,\rho,\mathbb{T}} = \sup_{\substack{t,s\in\mathbb{T}\\t\neq s}} \frac{|v(t) - v(s)|}{q(\rho(t,s))},$$

where ρ is a metric in the space \mathbb{T} , and $q = \{q(t), t \in \mathbb{T}\}$ is a modulus of continuity such that $\exists \alpha \in (0, 1] \ \forall t, s \in \mathbb{T}, t \neq s : q(\rho(t, s)) \leq |t - s|^{\alpha}$.

3 Main results

In this section we formulate theorems on estimates for distributions of Hölder semi-norms and moduli of continuity of random processes from spaces $\mathbb{F}_{\psi}(\Omega)$, defined on a compact space and on infinite interval.

Theorem 2. Let (\mathbb{T}, ρ) be a metric compact space. Consider a separable random process $X = \{X(t), t \in \mathbb{T}\}$ belonging to the space $\mathbb{F}_{\psi}(\Omega)$ that has the property Z with functions U(n), z(x) and $x_0 > 0$.

Suppose that there is a monotonically increasing continuous function $\sigma = \{\sigma(h), h \ge 0\}$ such that $\sigma(h) > 0$ as h > 0, $\sigma(0) = 0$ and the following inequality holds

$$\sup_{b(t,s) \le h} \|X(t) - X(s)\|_{\psi} \le \sigma(h).$$

$$\tag{1}$$

Let $N(\varepsilon) = N_{\rho}(\mathbb{T}, \varepsilon)$ be a metric massiveness of the space (\mathbb{T}, ρ) . Consider $\varepsilon_0 = \sigma^{(-1)}\left(\sup_{t,s\in\mathbb{T}}\rho(t,s)\right)$, where $\sigma^{(-1)}(h)$ is the inverse function of the function $\sigma(h)$, and

$$g_B(\varepsilon) = \int_0^{\sigma(\varepsilon)} U(B^2 N^2(\sigma^{(-1)}(t))) dt < \infty, \qquad \varepsilon > 0.$$

Then for $x > x_0$, $\varepsilon \in (0, \varepsilon_0)$ and B > 1 the following inequality holds true

$$\mathsf{P} \left\{ \sup_{0 < \rho(t,s) \le \varepsilon} \frac{|X(t) - X(s)|}{(6 + 4\sqrt{2}) f_B(\rho(t,s)) + (5 + 2\sqrt{6}) g_B(\rho(t,s))} > x \right\} \le \\ \le \frac{2B(2B+1)}{(B^2 - 1)N(\varepsilon)} \cdot \exp\{-z(x)\},$$

where
$$f_B(\varepsilon) = \int_{0}^{\sigma(\varepsilon)} U(BN(\sigma^{(-1)}(t)))dt, \ \varepsilon > 0.$$

Theorem 3. Let the assumptions of Theorem 2 hold true. Then the following inequality holds

$$\limsup_{\varepsilon \downarrow 0} \frac{\Delta(X;\varepsilon)}{x_0((6+4\sqrt{2})f_B(\varepsilon) + (5+2\sqrt{6})g_B(\varepsilon))} \le 1$$

with probability 1, where

$$\Delta(X;\varepsilon) = \sup_{\substack{t,s\in\mathbb{T}\\ 0<\rho(t,s)\leq\varepsilon}} |X(t) - X(s)|,$$

$$f_B(\varepsilon) = \int_0^{\sigma(\varepsilon)} U(BN(\sigma^{(-1)}(t))) dt, \ g_B(\varepsilon) = \int_0^{\sigma(\varepsilon)} U(B^2 N^2(\sigma^{(-1)}(t))) dt < \infty.$$

Now consider an infinite interval $[0,\infty)$. Let $[0,\infty) = \bigcup_{i=0}^{\infty} A_i$, where $A_i = [a_i, a_{i+1}]$ and $\{a_i, i = 0, 1, ..., \infty\}$ is an increasing sequence, $a_0 = 0$. Denote $\alpha_i = a_{i+1} - a_i$ and $D_i = [a_i, a_{i+1} + \theta]$, where $\theta \in \left(0, \min_{i \ge 0} \alpha_i\right)$. Let $N_i(\varepsilon)$ be metric massiveness for D_i , i = 0, 1, ... with the metric $\rho(t, s) = |t-s|, t, s \in [0,\infty)$.

Theorem 4. Consider a separable random process $X = \{X(t), t \in [0, \infty)\}$ belonging to the Banach space $\mathbb{F}_{\psi}(\Omega)$ that has the property Z with functions U(n), z(x) and $x_0 > 0$. Suppose that there are monotonically increasing continuous functions $\sigma_i = \{\sigma_i(h), h \ge 0\}$ such that $\sigma_i(0) = 0, i = 0, 1, ...$ and $\forall i = 0, 1, ...$ the following inequality holds

$$\sup_{\substack{t-s| \le h\\t,s \in D_i}} \|X(t) - X(s)\|_{\psi} \le \sigma_i(h), \qquad 0 < h < \alpha_i + \theta.$$
(2)

 $Let \ also$

$$\varepsilon_0 = \min_{i \ge 0} \left\{ \sigma_i^{(-1)} \left(\sup_{t, s \in D_i} \rho(t, s) \right) \right\} = \min_{i \ge 0} \left\{ \sigma_i^{(-1)} (\alpha_i + \theta) \right\},$$

where $\sigma_i^{(-1)}(h)$ are inverse functions to functions $\sigma_i(h)$, $i = 0, 1, ..., and \forall i = 0, 1, ...$:

$$g_{B,i}(\varepsilon) = \int_{0}^{\sigma_i(\varepsilon)} U(B^2 N_i^2(\sigma_i^{(-1)}(t))) dt < \infty;$$

$$f_{B,i}(\varepsilon) = \int_{0}^{\sigma_i(\varepsilon)} U(BN_i(\sigma_i^{(-1)}(t)))dt, \ \varepsilon > 0.$$

Denoting $w_{B,i}(t,s) = (6+4\sqrt{2})f_{B,i}(|t-s|) + (5+2\sqrt{6})g_{B,i}(|t-s|), t, s \in D_i$ and $w_B(t,s)$ is such function that

$$w_B(t,s) = \{ w_{B,i}(t,s) \mid t, s \in A_i \text{ or } \min\{t,s\} \in A_i, \max\{t,s\} \in A_{i+1} \},\$$

we obtain that for all $x > x_0$, $\varepsilon \in (0, \min\{\varepsilon_0, \theta\})$ and $\theta > \varepsilon$ under the condition $\sum_{i=0}^{\infty} \frac{1}{\alpha_i} < \infty$ the following inequality holds true:

$$\mathsf{P}\left\{\sup_{\substack{0<|t-s|\leq\varepsilon\\t,s\in[0,\infty)}}\frac{|X(t)-X(s)|}{w_B(t,s)}>x\right\}\leq \frac{4\varepsilon B(2B+1)}{B^2-1}\cdot\exp\{-z(x)\}\cdot\sum_{i=0}^{\infty}\frac{1}{\alpha_i+\varepsilon}$$

Acknowledgements: I would like to thank Prof. Yurii Kozachenko for the support in the preparation of this material.

References

- A. Bressan. Lecture Notes on Functional Analysis: With Applications to Linear Partial Differential Equations. Graduate Studies in Mathematics 143. American Mathematical Society, Providence, RI, 2013.
- [2] V. V. Buldygin, Yu. V. Kozachenko. Metric Characterization of Random Variables and Random Processes. American Mathematical Society, Providence, RI, 2000.
- [3] R. M. Dudley. Sample functions of the Gaussian processes. Ann. Probab., 1(1):3-68, 1973.
- [4] M. B. Marcus and J. Rosen. L_p moduli of continuity of Gaussian processes and local times of symmetric Lévy processes. Ann. Probab., 36(2):594–622, 2008.
- [5] Yu. V. Kozachenko and Yu. Yu. Mlavets'. The Banach spaces $\mathbf{F}_{\psi}(\Omega)$ of random variables. *Theor. Probability and Math. Statist.*, 86:105–121, 2013.

- [6] Yu. V. Kozachenko, T. Sottinen, O. Vasylyk. Lipschitz conditions for Sub_φ(Ω)-processes and applications to weakly self-similar processes with stationary increments. *Theor. Probability and Math. Statist.*, 82:57–73, 2011.
- [7] D. V. Zatula and Yu. V. Kozachenko. Lipschitz conditions for stochastic processes in the Banach spaces $\mathbb{F}_{\psi}(\Omega)$ of random variables. *Theor. Probability and Math. Statist.*, 91:43–60, 2015.