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Recently, there has been an increasing interest on the combination of copulas
with a finite mixture model. Such a framework is useful to reveal the hidden de-
pendence patterns observed for random variables flexibly in terms of statistical
modeling. The combination of vine copulas incorporated into a finite mixture
model is also beneficial for capturing hidden structures on a multivariate data
set. In this respect, the main goal of this study is extending the study of Kim
et al. (2013) with different scenarios. For this reason, finite mixture of C-vine
is proposed for multivariate data with different dependence structures. The
performance of the proposed model has been tested by different simulated data
set including various tail dependence properties.
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1 Full Inference on C-vine Copula

This section is introduced to recall inference procedures of parameters in Vine
copula, exemplified by C-vine copula. Generally, p-dimensional C-vine copula
density can be written as in 1,

f(x;φcvine) =
p∏

k=1
fk(xk)

p−1∏
i=1

p−i∏
j=1

ci,i+j|1:(j−1)

(F (xi|x1, ..., xi−1), F (xi+j |x1, ..., xi−1);βi,i+j|(i+1):(i+j−1))

(1)

where fk(xk) denotes the marginal densities, ci,i+j|1:(j−1) are the bivariate
copula density functions with parameter(s) βi,(i+j)|(i+1):(i+j−1), and φcvine is
the set of all parameters in p-dimensional C-vine density.
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There exist one root node in the tree construction of C-vine model which
results in following illustration in 4-dimension given by equation 2,

f(x1, x2, x3, x4;φ) = c12(F (x1), F (x2);β12)c13(F (x1), F (x3);β13)
c14(F (x1), F (x4);β14)
c23|1(F (x2|x1), F (x3|x1);β23|1)c24|1(F (x2|x1), F (x4|x1);β24|1)

c34|12(F (x3|x1, x2), F (x4|x1, x2);β34|12)
4∏

k=1
fk(xk)

(2)

Under such multivariate framework, full inference on C-vine copula can be
derived using the log-likelihood function presented in 3,

L(φ) =
p−1∑
i=1

p−i∑
j=1

N∑
n=1

log ci,i+j|(1):(j−1)

(F (xi,n|x1,n, ..., xi−1,n), F (xi+j,n|x1,n, ..., xi−1,n);βi,i+j|(i+1):(i+j−1))
(3)

and following three consecutive steps:

Step 1 Decide which variable is used as a root node in the first tree T1 of a
C-vine copula (i.e. joining the variables in which the root node variable
is selected based on its significant relations with other variables)

Step 2 Specify the family and parametric shape of each pair-copula in an assumed
C-vine copula

Step 3 Estimate all parameters of C-vine by maximizing the log-pseudo likeli-
hood function given in 3

2 Finite Mixture of C-vines

The finite mixture model is introduced to connectm component C-vine densities
to detect complex and hidden dependence structures in multivariate data with
the related EM algorithm for estimating the parameters in the model.

Assume that a p-dimensional random vector X=(X1, ..., Xp) is said to be
generated from a mixture of M - component C-vine densities, where its density
function is defined as in 4.
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g(x,θ) =
M∑

m=1
πmf(x,φm) (4)

where πm is the mixing proportion of the m-th component s.t. 0 < πm < 1
and

∑M
m=1 πm = 1. Besides, φm is the m-th component-specific parameter

vector for the C-vine density described in 4. Note that θ is the set of all
parameters with dimension p and denoted by Θ, full product space (the
simplex of πm and the cross product space of φm). Here p is the total number
of free parameters to be estimated and p = (M − 1) +

∑M
m=1 dim(φm). For

the estimation of equation 4, both the number of components M and the
parameters θ are required to estimate, using the following EM-algorithm setup,
proposed previously by Dempster et al. (1977).

Assume that N observations randomly drawn from a M component C-vine
density given in 4, denoted as xk=(xk,1, ..., xk,p) where k = 1, ..., p. Then,
log-likelihood of θ is described as given in 5

L(θ) = log(
N∏

n=1
g(xn,θ)) = log(

N∏
n=1

M∑
m=1

πmf(xn,φm)) (5)

Let zn=(zn1, ..., znm, ..., znM ) denotes latent variables, where znm = 1 if xn

drawn from the m-th component and znm = 0 otherwise. Here, zn is i.i.d.
from a multinomial distribution, i.e. zn is Mult(M,π = (π1, ..., πm)). Under
this setup, the complete log-likelihood for the complete data set yn=(xn,zn) is
given by equation 6.

L(θ)c = log
N∏

n=1

M∏
m=1

[πmf(xn,φm)]znm

=
N∑

n=1

M∑
m=1

znm log(πm) +
N∑

n=1

M∑
m=1

znm log(f(xn,φm))

(6)

Starting with initial values (initial guesses) for the parameters, θ0, the re-
peated E-th and M-th step of the EM algorithm (to compute the successive
estimates, θs) is described as follows:

E-step Calculates the conditional expectation of L(θ)c given the observed data
and current parameter estimates for θ. Such a computation is equivalent
to the calculation of posterior probability that xn belongs to the m-th
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component, given the current values of the parameters formulated as in
equation 7

ẑnm
(s) = E[znm|x, θs] = P [znm = 1|x, θs] = π

(s)
m f(xn,φ

(s)
m )∑M

l=1 π
(s)
l f(xn,φ

(s)
l )

(7)

M-step Computes the parameter estimates for each component independently,
(π(s+1)

1 , ..., π(s+1)
m ,..., π(s+1)

M ) and (φ(s+1)
1 , ..., φ(s+1)

m , ..., φ(s+1)
M ) by max-

imizing the expected complete-data log-likelihood from E-step. It is

also possible to obtain closed form solution for π(s+1)
m =

∑N

n=1
ẑnm

(s)

N .
Afterwords, the estimation of φ(s+1)

m in the m-th component C-vine or
D-vine density function is equivalent to deriving the parameter estimates
weighted by ẑnm

(s) for the parameters in a C-vine density in equation 4.

The E-step and the M-step are iterated until L(θs+1) − L(θs) is smaller
than a pre-specified tolerance value (ie. 10−6 or 10−8), as a result of a nice
property of EM algorithm that the log-likelihood is not decreased during the
iteration. Based on the above setup, the given algorithm is run with multiple
starting values randomly drawn from the parameter space and the best values
is chosen from multiple local maximizer having the highest log-likelihood value.
To accomplish the full inference on mixture of C-vines, three well known model
selection criteria values are used:

• Akaike’s Information Criterian (AIC) as defined AIC = −2 log(L(θ̂))+2p

• Bayesian Information Criterian (BIC) as defined BIC = −2 log(L(θ̂)) +
p log(n)

• Consistent AIC (CAIC) as defined CAIC = −2 log(L(θ̂)) + p(log(n) + 1)

where θ̂ is the estimate of p-dimensional θ defined in 4. In this study, the
main objective is identifying the full inference on C-vine mixture model based
on different scenarios. For this reason, the whole procedure for the full inference
of C-vine copula can be summarized as follows:

Step 1 Derive the normalized ranks of d-dimensional observed data

Step 2 Decide the root node of each C-vine density by calculating all pairwise
correlations.
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Step 3 Consider different candidates of copulas for all pairs in an assumed
mixture model

Step 4 Given a copula family, fit a mixture vine copula with M component and
estimate the parametersin each model by employing the EM- algorithm

Step 5 Select the best fitted model by finding the model with smallest values of
model selection criterians such as AIC, BIC and CAIC.

For the last step, naturally, even if the selection criteria measures give
meaningful conclusions, they are not enough to decide the best fitted model.
For this reason, available GOF tests are also required to improve the model
selection part. Especially, Clarke and Vuong tests are widely used GOF test for
comparing two different vine copulas might be considered in model selection.

3 Simulation Results

To test the performance of the mixture model, the base mixture model is
constructed using Clayton and Gumbel pairs with parameters (βC

12 = 8, βC
13 =

7, βC
23|1 = 6) and (βG

12 = 9, βG
13 = 6, βG

23|1 = 5), respectively. As the number of
parameters described, as a simple case, the mixture of C-vines are considered
in 3-dimension with positive strong tail dependencies.

Here, as a simulated data, 2 component equally weighted mixture of C-
vines is considered under the proposed mixture model to investigate the
data generating process performs well or not. In this setup, the number of
observations has been increased from N = 50 (small data set) to N = 1000
(large data set) to see the differences in parameter estimation process. For now,
parameter estimation results of 2-component C-vine mixture with Clayton
pairs are presented for illustration. Here, the estimated parameters for each
pair of both components are obtained using the average value and the median
values of 1000 different run given in () and [] table, respectively.

In table 1, as it is expected, parameter estimations of the first component
are very close to true value since the correct copula family at each step
is predefined as Clayton at the beginning for the simulated data. Besides,
the number of observations has positive impact on closing the gap between
parameter estimates and true values. Generally, the most suitable model will
be determined by comparing the model comparison values among different
scenarios like Clayton-Clayton, Clayton-Gumbel, Frank-Gumbel, assumed pair
copulas in mixture model. As we expected, the most plausible result will be
obtained from the Clayton-Gumbel pair families selection for the first-second
component, same as the original simulated data.
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Table 1: Parameter Estimation and Model Comparison Values
Number of Observations

50 100 250 500 1000
β̂C

12 (7.19)[7.3] (7.95)[8.05] (8.77)[8.82] (8)[8] (8)[8]
β̂C

13 (6.49)[6.6] (7.08)[7.15] (7.76)[7.71] (7)[7] (7)[7]
β̂C

23|1 (4.29)[4.24] (4.29)[4.25] (4.81)[4.81] (6)[6] (6)[6]
β̂C

12 (7.6)[7.66] (7.29)[7.27] (7.12)[7.22] (7.07)[6.98] (7.65)[7.39]
β̂C

13 (6.3)[6.32] (5.8)[5.79] (5.55)[5.66] (5.5)[5.43] (6.03)[5.87]
β̂C

23|1 (3.32)[3.11] (2.85)[2.53] (2.53)[2.42] (2.56)[2.54] (2.14)[2.17]
AIC -194 -363 -783 -1536 -3001
BIC -188 -356 -773 -1524 -2986

CAIC -185 -353 -770 -1521 -2983
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