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We introduce the notions of auto-distance covariance and correlation matrices
for multivariate time series and give their consistent estimators. In addition, a
testing methodology for testing the i.i.d. hypothesis for multivariate time series
data is developed. The resulting test statistic is compared with the related
multivariate Ljung-Box statistic in a real data example.
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1 Introduction

There has been a considerable recent interest in measuring dependence by
employing the concept of distance covariance function, a new measure of
dependence for random variables, introduced by Székely et al. (2007). This
tool has been recently defined to the context of multivariate time series by
Zhou (2012), but without exploring the interrelationships between the various
time series components. In this paper, we extend the notion of distance
covariance to multivariate time series by defining its matrix version. Based on
this new concept, we develop a multivariate testing methodology for testing
independence.

2 Auto-distance covariance matrix

We denote by {Xt : t = 0,±1,±2, . . . } a d-dimensional time series process,
with components Xt;r, r = 1, . . . , d. Suppose we have available a sample of size
n, that is {Xt, t = 1, . . . , n}. We define the pairwise auto-distance covariance
function as a function of the joint and marginal characteristic functions of
the pair (Xt;r, Xt+j;m), for r,m = 1, . . . , d. Denote by φ

(r,m)
j (u, v) the joint

characteristic function of Xt;r and Xt+j;m; that is

φ
(r,m)
j (u, v) = E [exp (i(uXt;r + vXt+j;m))] , j ∈ Z,
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and the marginal characteristic functions of Xt;r and Xt+j;m as φ(r)(u) :=
φ

(r,m)
j (u, 0) and φ(m)(v) := φ

(r,m)
j (0, v) respectively, where (u, v) ∈ R2, and

i2 = −1. The pairwise auto-distance covariance function (ADCV) between
Xt;r and Xt+j;m, Vrm(j), is defined as the positive square root of

V 2
rm(j) = 1

π2

∫
R2

∣∣∣φ(r,m)
j (u, v)− φ(r)(u)φ(m)(v)

∣∣∣2
|u|2 |v|2

dudv, j ∈ Z.

The auto-distance covariance matrix, V (j), is then defined by

V (j) = [Vrm(j)]dr,m=1 , j ∈ Z.

The pairwise auto-distance correlation function (ADCF) between Xt;r and
Xt+j;m, Rrm(j), is a coefficient that lies in the interval [0, 1] and also measures
dependence and is defined as the positive square root of

R2
rm(j) = V 2

rm(j)√
V 2

rr(0)
√
V 2

mm(0)
,

for Vrr(0)Vmm(0) 6= 0 and zero otherwise. The auto-distance correlation matrix
of Xt, is then defined as

R(j) = [Rrm(j)]dr,m=1 , j ∈ Z.

When j 6= 0, Vrm(j) measures the dependence of Xt;r on Xt+j;m. In general,
Vrm(j) 6= Vmr(j) for r 6= m, since they measure different dependence structure
between the series {Xt;r} and {Xt;m} for all r,m = 1, 2, . . . , d. Thus, V (j)
and R(j) are non-symmetric matrices, but V (−j) = V ′(j) and R(−j) = R′(j).
More properties can be found in Fokianos and Pitsillou (2017b). The empirical
pairwise ADCV, V̂rm(j), for j ≥ 0, is the non-negative square root of

V̂ 2
rm(j) = 1

(n− j)2

n−j∑
t,s=1

Ar
tsB

m
ts ,

where Ar = Ats and Bm = Bts are Euclidean distance matrices given by

Ar
ts = ar

ts − ār
t. − ār

.s + ār
..,

with ar
ts = |Xt;r −Xs;r|, ār

t. =
(∑n−j

s=1 a
r
ts

)
/(n−j), ār

.s =
(∑n−j

t=1 a
r
ts

)
/(n−j),

ār
.. =

(∑n−j
t,s=1 a

r
ts

)
/(n − j)2. Bm

ts is defined analogously in terms of bm
ts =

|Xt+j;m −Xs+j;m|.
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Fokianos and Pitsillou (2017b) showed that for a d-dimensional strictly
stationary and ergodic process {Xt} with E |Xt;r|2 <∞, for r = 1, . . . , d, then
for all j ∈ Z,

V̂ (j)→ V (j),

almost surely, as n→∞. In addition, under pairwise independence it holds
that

nV̂ 2
rm(j)→ Z :=

∑
k

λkZ
2
k ,

in distribution, as n→∞, where {Zk} is an i.i.d sequence of N(0, 1) random
variables, and (λk) is a sequence of nonzero eigenvalues.

3 The testing problem

In this section, we develop a test statistic for testing the null hypothesis that
{Xt} is an i.i.d. sequence. Following Hong’s (1999) generalized spectral domain
methodology, we first consider the generalized spectral density matrix

F (ω, u, v) =
[
f (r,m)(ω, u, v)

]d

r,m=1
,

where

f (r,m)(ω, u, v) = 1
2π

∞∑
j=−∞

σ
(r,m)
j (u, v)e−ijω, ω ∈ [−π, π],

with p denoting the bandwidth parameter. Under the null hypothesis of
independence, F (·, ·, ·) reduces to

F0(ω, u, v) = 1
2π

[
σ

(r,m)
0 (u, v)

]d

r,m=1
.

Thus, comparing the Parzen’s (1957) kernel-type estimators F̂ (ω, u, v) and
F̂0(ω, u, v) via a Frobenious norm we result to a test statistic based on the
ADCV matrix, given by

T̃n =
n−1∑
j=1

(n− j)k2(j/p)tr{V̂ ∗(j)V̂ (j)}, (1)

where k(·) is a univariate kernel function satisfying some standard properties.
Moreover, V̂ ∗(·) denotes the complex conjugate matrix of V̂ (·) and tr(A)
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denotes the trace of the matrix A. Fokianos and Pitsillou (2017b) also formed
a similar test statistic in terms of the ADCF matrix, given by

Tn =
n−1∑
j=1

(n− j)k2(j/p)tr{V̂ ∗(j)D̂−1V̂ (j)D̂−1}. (2)

Under the null hypothesis of independence and some further assumptions
about the kernel function k(·), the standardized version of the test statistics
T̃n and Tn given in (1) and (2) were proved to follow N(0, 1) asymptotically
and they are consistent. Fokianos and Pitsillou (2017a) developed a similar
testing methodology based on ADCV/ADCF for testing serial dependence in
a univariate strictly stationary time series setting.

4 Real data example

In this section we apply the proposed testing methodology to the monthly log
returns of the stocks of IBM and the S&P 500 composite index starting from 29
May 1936 to 28 November 1975 for 474 observations. A larger data set and the
aforementioned testing methodology are included in the R package dCovTS
(Pitsillou and Fokianos, 2016). Assuming that the bivariate series follows a
VAR model and employing the AIC to choose its best order, we obtain that
a VAR(2) model fits well the data. Figure 1 shows the ADCF plot of the
residuals after fitting a VAR(2) model to the original series. Based on this plot,
the residuals of VAR(2) model do not have any strong dependence. The shown
critical values (dotted horizontal line) are the 95% simultaneous critical values
computed based on an algorithm suggested by Fokianos and Pitsillou (2017b)
using the independent wild bootstrap approach (Dehling and Mikosch, 1994;
Shao, 2010; Leucht and Neumann, 2013). To formally confirm the adequacy of
this model fit, we perform tests of independence among the residuals for the
following bandwidth values, p = 6, 11 and 20. The proposed statistic Tn and
the related multivariate Ljung-Box statistic (Hosking, 1980) both give large
p-values (0.254, 0.190, 0.098 and 0.958, 0.809, 0.811 respectively) suggesting
the absence of any serial dependence among the residuals. The calculation
of the statistic Tn is based on the Bartlett kernel. The computation of the
p-values is based on 499 independent wild bootstrap realizations.

Acknowledgements: Financial support from a University of Cyprus research
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Figure 1: The sample ADCF of the residuals after fitting VAR(2) model to the
bivariate series IBM and S&P500.
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