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1 Introduction

Every continuous distribution with density satisfying the so called Pearson
equation

p′(x)
p(x) = (a1 − 2b2)x+ (a0 − b1)

b2x2 + b1x+ b0
(1)

is called a Pearson distribution (see [8]). The family of Pearson distributions
consists of six parametric subfamilies: normal, gamma, beta, Fisher-Snedecor,
reciprocal gamma and Student distributions.

Strong solution of SDE

dXt = µ(Xt)dt+ σ(Xt)dWt, t ≥ 0, (2)

where

µ(x) = a0 + a1x, σ(x) =
√

2b(x) =
√

2(b2x2 + b1x+ b0)

is called the Pearson diffusion. They are called after Pearson since their
stationary distributions belong to the Pearson family. Usually, it is convenient
to re-parametrize drift and squared diffusion:

µ(x) = −θ(x− µ), σ2(x) = 2θk(B2x
2 +B1x+B0),
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where µ ∈ R is the stationary mean depending on coefficients of the Pearson
equation (1), θ > 0 is the scaling of time determining the speed of the mean
reversion, and k is a positive constant. Note that we need σ2(x) > 0 on the
diffusion state space (l, L).

Pearson diffusions could be categorized into six subfamilies, according to the
degree of the polynomial b(x) and, in the quadratic case b(x) = b2x

2 + b1x+ b0,
according to the sign of its leading coefficient b2 and the sign of its discriminant
∆:

• constant b(x) - Ornstein-Uhlenbeck (OU) process with normal stationary
distribution,

• linear b(x) - Cox-Ingersol-Ross (CIR) process with gamma stationary
distribution,

• quadratic b(x) with b2 < 0 - Jacobi diffusion with beta stationary distri-
bution,

• quadratic b(x) with b2 > 0 and ∆ > 0 - Fisher-Snedecor (FS) diffusion
with the Fisher-Snedecor stationary distribution,

• quadratic b(x) with b2 > 0 and ∆ = 0 - reciprocal gamma (RG) diffusion
with reciprocal gamma stationary distribution,

• quadratic b(x) with b2 > 0 and ∆ < 0 - Student diffusion with the
Student stationary distribution.

2 Fractional diffusions

The subject of our interest are fractional derivatives of order 0 < α < 1. We
define Caputo fractional derivative of order 0 < α < 1 as

dαf(x)
dxα

= 1
Γ(1− α)

∞∫
0

d

dx
f(x− y)y−α dy,

or equivalently for absolutely continuous functions as

dαf(x)
dxα

= 1
Γ(1− α)

x∫
0

(x− y)−αf ′(y) dy.

Interesting and detailed read regarding fractional derivatives one can find in
[7, Chapter 2].
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By (X(t), t ≥ 0) denote the Pearson diffusion solving (2). Introduce (Dt, t ≥
0), the standard stable subordinator with index 0 < α < 1, which is independent
of the process (X(t), t ≥ 0). Dt is a homogeneous Lèvy process with the
Laplace transform

E[e−sDt ] = exp{−tsα}.

Its inverse process
Et = inf{x > 0 : Dx > t}

is non-Markovian, non-decreasing, and for every t random variable Et has a
density, which will be denoted by ft(·). The Laplace transform of this density
is (see e.g., [9])

E[e−sEt ] =
∫ ∞

0
e−sxft(x)dx = Eα(−stα), (3)

where

Eα(z) :=
∞∑
j=0

(z)j

Γ(1 + αj)

is the Mittag-Leffler function (see, for example [10]).
Notice that for α = 1

Eα(z) = ez,

i.e, Mittag-Leffler reduces to the exponential function.
Now, define the fractional Pearson diffusion (Xα(t), t ≥ 0) as a composition

of the Pearson diffusion and inverse of the stable subordinator, i.e.

Xα(t) = X(Et), t ≥ 0. (4)

We emphasize that (Xα(t), t ≥ 0) is a non-Markovian process and define its
transition density pα(x, t; y) as

P (Xα(t) ∈ B|Xα(0) = y) =
∫
B

pα(x, t; y)dx (5)

for any Borel subset B of (l, L).
Using results from [1] one can show that if the non-fractional Pearson diffu-
sion satisfy SDE (2) with inital condition X(0) = 0, then the corresponding
fractional Pearson diffusion defined with (4) satisfy SDE

dXα(t) = µ(Xα(t))dEt + σ(Xα(t))dBEt (6)
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with initial condition Xα(0) = 0.
Integral form of this SDE is

Xα(t) = X(Et) =
Et∫
0

(a0 + a1X(s)) ds+
Et∫
0

√
2(b0 + b1X(s) + b2(X(s))2)dB(s).

For details we refer to [1] and [4].
Non-heavy-tailed fractional Pearson diffusions (fractional Ornstein-Uhlenbeck
(OU) , Cox-Ingersol-Ross (CIR) and Jacobi diffusion) are studied in detail in
[3], while heavy-tailed fractional Pearson diffusions (fractional Fisher-Snedecor
and reciprocal gamma diffusion) are studied in the recent paper [4]. Fractional
Student diffusion have not yet been studied in detail since the nature behind the
process (infinitesimal generator and spectrum) is much more complicated then
in the other five cases. However, regarding non-fractional Student diffusion
one can find some results in [5].
In this paper, we present simulation results regarding fractional Fisher-Snedecor
and fractional reciprocal gamma diffusions, which illustrates theoretical results
obtained in [4]. Therefore, we begin by stating the necessary theoretical results.

3 Fractional reciprocal gamma diffusion

The reciprocal gamma diffusion satisfies the SDE

dXt = −θ
(
Xt −

γ

β − 1

)
dt+

√
2θ

β − 1X
2
t dWt, t ≥ 0,

with θ > 0 and has invariant density

rg(x) = γβ

Γ(β) x
−β−1e−

γ
x I〈0,∞〉(x) (7)

with parameters γ > 0 and β > 1, where the latter requirement ensures the
existence of the stationary mean γ/(β − 1).

Theorem 1. The transition density of the fractional RG diffusion is given by

pα(x, t;x0) =
b β2 c∑
n=0

rg(x)Bn(x)Bn(x0) Eα(−λntα)

+ rg(x)
4π

∞∫
θβ2

4(β−1)

Eα(−λtα) b(λ)ψ(x,−λ)ψ(x0,−λ) dλ,
(8)



Theoretical and simulation results on heavy-tailed fractional Pearson diffusionsPPP

where Bn are normalized Bessel polynomials, λn are their eigenvalues, b(λ) is
a constant depending on λ and ψ is the solution of the corresponding Sturm-
Liouville equation.

For proof and details see [4].

4 Fractional Fisher-Snedecor diffusion

The Fisher-Snedecor diffusion satisfies the SDE

dXt = −θ
(
Xt −

β

β − 2

)
dt+

√
4θ

γ(β − 2)Xt(γXt + β) dWt, t ≥ 0

with θ > 0 and has invariant density

fs(x) = β
β
2

B
(
γ
2 ,

β
2

) (γx)
γ
2−1

(γx+ β) γ2 + β
2
γ I〈0,∞〉(x) (9)

with parameters γ > 0 and β > 2, where the latter requirement ensures the
existence of the stationary mean β/(β − 2).

Theorem 2. The transition density of fractional FS diffusion is given by

pα(x, t;x0) =
b β4 c∑
n=0

fs(x)Fn(x0)Fn(x) Eα(−λntα)

+ fs(x)
π

∞∫
θβ2

8(β−2)

Eα(−λtα) a(λ) f1(x0,−λ) f1(x,−λ) dλ,
(10)

where Fn are normalized Fisher-Snedecor polynomials, λn are their eigenvalues,
a(λ) is a constant depending on λ and f1 is the solution of the corresponding
Sturm-Liouville equation.

For proof and details see [4].

5 Stationary distributions of the fractional reciprocal
gamma and Fisher-Snedecor diffusions

By pα(x, t) denote the density of Xα(t), by p(x, t) the density of X(t) and let
f be the density of initial state Xα(0). Now, by the definition of transition
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density it follows
pα(x, t) =

∫ ∞
0

pα(x, t; y)f(y)dy.

If we assume that the initial distribution is concentrated in one point, i.e. if
f(y) = δ(x0) we obtain

pα(x, t) = pα(x, t;x0)

and since for fractional FS and RG diffusion, transition densities pα(x, t;x0)
are given via (8) and (10), one can show that

pα(x, t)→ m(x) as t→∞, (11)

where m is FS stationary distribution in fractional FS diffusion case, and RG
stationary distribution in fractional RG case.
In fact, even without the assumption on the concentrated initial state, one can
prove the statement, for details we refer to [4].
Also, obsverve that

pα(x, t)→ p(x, t) as α→ 1. (12)

6 Correlation structure of fractional Pearson diffusions

Stationary Pearson diffusion X(t) such that the stationary distribution has
finite second moment has the correlation function given by

Corr [X(t), X(s)] = exp(−θ|t− s|), (13)

where θ is the autocorrelation parameter. Since the autocorrelation function
(13) falls off exponentially, Pearson diffusions exhibit short-range dependence.

We say that fractional Pearson diffusion Xα(t) defined by (4) is in the steady
state if it starts from its invariant distribution with the density m. Then the
autocorrelation function of Xα(t) = X(Et) is given by

Corr [Xα(t), Xα(s)] = Eα(−θtα) + θαtα

Γ(1 + α)

s/t∫
0

Eα(−θtα(1− z)α)
z1−α dz (14)

for t ≥ s > 0. The tehnique to prove this fact can be found in [2].
Observe that (14) implies the long-range dependence of the fractional diffusion
Xα(t), since the autocorrelation function (14) falls off like power law with
exponent α ∈ (0, 1).



Theoretical and simulation results on heavy-tailed fractional Pearson diffusionsPPP

7 Simulation results

Simulation results are based on the algorithm introduced in [6]. Basically, idea
is to seperately simulate trajectory of the inverse of the stable subordinator and
trajectory of the non-fractional diffusion. Afterwards, by linear interpolation
one gets trajectory of the fractional diffusion. This algorithm perfectly fits
our setting, since we define fractional Pearson diffusion as a composition of
the non-fractional Pearson diffusion and the inverse of the stable subordinator
(which are assume to be independent).
Trajectories of such simulated fractional RG and FS diffusion are given in
Figure 1, where the difference between non-fractional and fractional diffusions
can be clearly seen. Unlike non-fractional diffusions, fractional diffusions have
long resting periods of time due to change of time via inverse of the stable
subordinator Et.
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Figure 1: Sample paths of the fractional/non-fractional RG and FS diffusions
with parameters γ = 10, β = 20, θ = 0.01 and α = 0.7, based on
10000 points with inital state X0 = 0.4.

Next, we illustrate that density of fractional diffusion approach the stationary
density as explained in Section 5. We simulated 1000 trajectories of the
fractional RG diffusion and estimated densities at times t = 0.02, t = 0.2 and
t = 2, see figure 2. Comparing densities pα(x, t) and p(x, t), we clearly observe
slower approaching to the stationary density in fractional case. Autocorrelation
function (14) of the fractional diffusion, in comparison with the autocorrelation
function (13) of the non-fractional diffusion which decays exponentially fast,
decays much slower, i.e. in polynomial rate. This is illustrated in Figure 3.
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Figure 2: Estimated densities pα(x, t) and p(x, t) for reciprocal gamma diffusion
with parameters γ = 10, β = 20, θ = 0.01 and α = 0.7, based on
1000 trajectories with inital state X0 = 0.4.
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Figure 3: Estimated autocorrelation function of fractional/non fractional RG
and FS diffusions with parameters γ = 10, β = 20, θ = 0.01 and
α = 0.7, based on 10000 points with inital state X0 = 0.4.
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