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In this paper we study the problem of modelling the integer-valued vector
observations. We consider the BINAR(1) models defined via copula-joint
innovations. We review different parameter estimation methods and analyse
estimation methods of the copula dependence parameter. We also examine the
case where seasonality is present in integer-valued data and suggest a method
of deseasonalizing them. Finally, an empirical application is carried out.
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1 Introduction

Different financial institutions that issue loans do so following company-specific
(and/or country-defined) rules which act as a safeguard so that loans are not
issued to people who are known to be insolvent. The adequacy of a firms
rules for issuing loans can be analysed by modelling the dependence between
the number of loans which have defaulted and number of loans that have not
defaulted via copulas.

The advantage of such approach is that copulas allow to model the marginal
distributions (possibly from different distribution families) and their depen-
dence structure (which is described via a copula) separately. Because of this
feature, copulas were applied to many different fields (for some examples of
copula applications see [2], [4], [5] and [6]). While these studies were carried
out for continuous data, there is less developed literature on discrete models
created with copulas: [7] discussed the differences and challenges of using
copulas for discrete data compared to continuous data. By using bivariate
integer-valued autoregressive models (BINAR) it is possible to account for
both the discreteness and autocorrelation of the data. Furthermore, copulas
can be used to model the dependence of innovations in the BINAR(1) models:
[9] used the Frank copula and normal copula to model the dependence of the
innovations of the BINAR(1) model.
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In this short paper we analyse different BINAR(1) model with copula-
joint innovations parameter estimation methods. We also discuss some issues
concerning the seasonality in integer-valued data and suggest a method of de-
seasonalizing them. Finally, in order to analyse the presence of autocorrelation
and copula dependence in loan data, an empirical application is carried out on
weekly loan data. Estimation method comparisons and additional numerical
results can be found in [3].

The paper is organized as follows. Section 2 presents the BINAR(1) process,
Section 3 presents the definition of copulas. Section 4 compares different
estimation methods for the BINAR(1) model. Seasonal adjustment of integer-
valued data is presented in Section 5. In Section 6 an empirical application
is carried out using different combinations of copula functions and marginal
distribution functions. Conclusions are presented in Section 7.

2 The bivariate INAR(1) process

The BINAR(1) process was introduced in [11]. In this section we will provide
the definition of the BINAR(1) model.

Definition 1. Let Rt = [R1,t, R2,t]′, t ∈ Z be a sequence of independent
identically distributed (i.i.d.) non-negative integer-valued bivariate random
variables. A bivariate integer-valued autoregressive process of order 1 (BI-
NAR(1)), Xt = [X1,t, X2,t]′, t ∈ Z, is defined as:

Xt = A ◦Xt−1 + Rt =
[
α1 0
0 α2

]
◦
[
X1,t−1
X2,t−1

]
+
[
R1,t
R2,t

]
, t ∈ Z, (1)

where αj ∈ [0, 1), j = 1, 2, and the symbol ’◦’ is the thinning operator which also
acts as the matrix multiplication. We have that αj ◦Xj,t−1 :=

∑Xj,t−1
i=1 Yj,t,i

and Yj,t,1, Yj,t,2, . . . is a sequence of i.i.d. Bernoulli random variables with
P(Yj,t,i = 1) = αj = 1−P(Yj,t,i = 0), αj ∈ [0, 1), such that these sequences are
mutually independent and independent of the sequence Rt, t ∈ Z. For each t,
Rt is independent of Xs, s < t.

A number of thinning operator properties are provided in [12] and [13].
Properties of the BINAR(1) model can be easily derived and a number of these
are provided in [12]. We will expand on the work by [9] and [11] by analysing
additional copulas for the BINAR(1) model innovation distribution as well as
estimation methods for the distribution parameters.
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3 Copulas

Copulas are used for modelling the dependence between several random vari-
ables. The main advantage of using copulas is that they allow to model the
marginal distributions separately from their joint distribution. More informa-
tion about Copula theory, properties and applications can be found in [10] and
[8].

Since innovations of a BINAR(1) model are non-negative integer-valued
random variables, one needs to consider copulas linking discrete distributions.
According to Sklar’s theorem [14], if F1 and F2 are discrete marginals then a
unique copula representation exists only for values in the range of Ran(F1)×
Ran(F2). However, the lack of uniqueness does not pose a problem in empirical
applications because it implies that there may exist more than one copula
which describes the distribution of the empirical data. Bivariate copulas which
will be used when constructing and evaluating the BINAR(1) model in this
paper are:

• The Farlie-Gumbel-Morgenstern (FGM) copula with θ ∈ [−1, 1]:

C(u1, u2; θ) = u1u2(1 + θ(1− u1)(1− u2)),

• The Frank copula with θ ∈ (−∞,∞) \ {0}:

C(u1, u2; θ) = −1
θ

log
(

1 + (exp(−θu1)− 1)(exp(−θu2)− 1)
exp(−θ)− 1

)
,

where u1 := F1(x1), u2 := F2(x2). Here θ is the dependence parameter and
F1, F2 - marginal cdfs. See [10] for properties of these copulas.

4 Parameter estimation of the copula-based BINAR(1)
model

In this section we examine different BINAR(1) model parameter estimation
methods. Let Xt = (X1,t, X2,t)′ be a non-negative integer-valued time series
given in Def. 1, where the joint distribution of (R1,t, R2,t)′, with marginals
F1, F2, is linked by a copula C(·, ·): P(R1,t ≤ x1, R2,t ≤ x2) = C(F1(x1), F2(x2))
and let C(F1(x1), F2(x2)) = C(F1(x1), F2(x2); θ), where θ is a dependence pa-
rameter.
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4.1 Conditional least squares (CLS) estimation

The Conditional Least Squares (CLS) estimator minimizes the squared distance
between Xt and its conditional expectation. Similarly to the method in [13]
for the INAR(1) model, we construct the CLS estimator in the case of the
BINAR(1) model. The CLS estimators of αj , λj , j = 1, 2 are found by
minimizing the sum

Qj(αj , λj) :=
N∑
t=2

(Xj,t − αjXj,t−1 − λj)2 −→ min
αj ,λj

, j = 1, 2. (2)

The asymptotic properties of the CLS estimators for the INAR(1) model
case are provided in [13]. Assume now that the Poisson innovations R1,t
and R2,t with parameters λ1 and λ2, respectively, are joint by a copula with
dependence parameter θ. In order to estimate θ, [3] minimized the sum of
squared differences

S(M1,M2) =
N∑
t=2

(
X̃CLS

1,t X̃CLS
2,t − γ(M1,M2)(λ̂CLS

1 , λ̂CLS
2 ; θ)

)2
, (3)

where

X̃CLS
j,t := Xj,t − α̂CLS

j Xj,t−1 − λ̂CLS
j , j = 1, 2,

γ(M1,M2)(λ1, λ2; θ) :=
M1∑
k=1

M2∑
l=1

kl c(F1(k;λ1), F2(l;λ2); θ)− λ1λ2,

where c(F1(k;λ1), F2(s;λ2); θ) is the joint probability mass function and M1
and M2 are used to approximate the covariance γ(λ1, λ2; θ) as described in [3].

4.2 Conditional maximum likelihood (CML) estimation

BINAR(1) models can also be estimated via conditional maximum likelihood
(CML) (see [11] and [9]). The log conditional likelihood function is:

` =
N∑
t=2

logP(X1,t = x1,t, X2,t = x2,t|X1,t−1 = x1,t−1, X2,t−1 = x2,t−1)

for some initial values x1,1 and x2,1. In order to estimate the unknown
parameters we maximize the log conditional likelihood:

`(α1, α2, λ1, λ2, θ) −→ max
α1,α2,λ1,λ2,θ

. (4)
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Numerical maximization is straightforward with the optim function from R
statistical software.

For other marginal distribution cases where the marginal distribution has
parameters other than λj , equation (4) would need to be minimized by those
additional parameters.

4.3 Two-step estimation based on CLS and CML

Depending on the range of attainable values of the parameters and the sample
size, CML maximization might take some time to compute. On the other
hand, since CLS estimators of αj and λj are easily derived, [3] proposed to
substitute the parameters of the marginal distributions in eq. (4) with CLS
estimates from eq. (2). Then we would only need to maximize ` with respect
to a single dependence parameter θ.

4.4 Estimation method comparison via Monte Carlo simulation

A Monte Carlo simulation was carried out in [3] in order to compare the
estimation methods. The estimates of the dependence parameter were similar
in terms of MSE and bias for both CML and Two-step estimation method.

5 Seasonality

Assume now that the nonnegative integer-valued time series can be written
in the following form Zt = St + Xt, where Xt is defined by equation (1) and
St = (S1,t, S2,t)′ is the (deterministic) integer-valued seasonal component with
period d, where Sj,t = Sj,t+d, ∀t and j = 1, 2 and

∑d−1
k=0 Sj,t+k = 0.

In order to remove the seasonal effect but keep the nonnegative, integer-
valued properties of the data, we defined the operator s(L) = 1+L+ ...+Ld−1,
where LkZt = Zt−k, k ≥ 0. By applying this operator, the seasonal component
is removed and the sample size decreases by d− 1 observations. Alternatively,
data can also be aggregated to a lower frequency (e.g. from daily to weekly
data) in order to remove the seasonal effect at the cost of reducing the sample
size d times. Finally, one can extend the seasonal INAR(1) model proposed in
[1] to the BINAR(1) case.

Comparisons of these different seasonal adjustment methods is left for future
research.



PPP A. Buteikis

6 Application on default loan data

In this section we estimate a BINAR(1) model with the joint innovation distri-
bution modelled by a copula cdf for empirical data. The dataset consists of
weekly data on loans issued in Spain from October 21st, 2013, to January 1st,
2016 which includes loans that have defaulted and loans that were repaid with-
out missing any payments. We will analyse and model the dependence between
defaulted and non-defaulted loans as well as the presence of autocorrelation
by considering a BINAR(1) model with different copulas for the innovations.
For the marginal distributions of the innovations we considered Poisson as well
as negative binomial distributions. We used the Two-step estimation method
to estimate parameters. The dependence and variance parameter estimates
when both marginals are negative binomial are provided in Table 1. Additional
modelling results are provided in [3].

Table 1: Dependence and variance parameter estimates for BINAR(1) model
via Two-step estimation method

Copula θ̂ σ̂2
1 σ̂2

2 AIC
FGM 0.8927 6.5581 45.3683 1466.1542

(0.1867) (1.2402) (7.5522)
Frank 2.3848 6.5875 45.426 1466.9795

(0.5337) (1.2613) (7.5774)

Overall, both Frank and FGM copulas provide similar fit in terms of AIC,
regardless of the selected marginal distributions. The FGM copula is used to
model weak dependence. Given a larger sample size, a Frank copula might be
more appropriate because it can capture a stronger dependence than that of
an FGM copula. Furthermore, the estimated dependence parameter is positive
for the Frank and FGM copula cases, which indicates that there is a positive
dependence between defaulted and non-defaulted loans.

7 Conclusions

In this short paper we have analysed different estimation methods for estimating
parameters of a BINAR(1) model, including the dependence parameter of
its innovations, which are linked via a copula. According to Monte Carlo
simulations carried out in [3], BINAR(1) parameter estimates via CML had
the smallest MSE and bias, however, estimates of the dependence parameter
via CML and Two-step methods were similar. We also suggested a method to
seasonally adjust the integer-valued data which exhibits a seasonal variation.
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An empirical application on loan data was carried out and BINAR(1) models
were estimated using different combinations of copula functions and marginal
distribution functions. Additional estimation results are provided in [3]. The
FGM copula provided the best model fit with Frank copula being very close
in terms of AIC values. A larger sample size could help determine whether
FGM or Frank copula is more appropriate to model the dependence between
defaulted and non-defaulted loan amounts. Furthermore, the estimated copula
dependence parameter indicates that the dependence between defaulted and
non defaulted loans is positive.

Finally, one can apply different copula functions in order to analyse whether
the loan data exhibits different forms of dependence. Lastly, the model can
be extended by analysing the presence of structural changes within the data
as well as extending the BINAR(1) model with copula joint innovations to
account for the past values of other time series rather than only itself.
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