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We consider estimation of the diffusion parameter of a diffusion process observed
over a fixed time interval. We present conditions on approximate martingale
estimating functions under which estimators are rate optimal and efficient in
the case of in-fill asymptotics. In this setup, limit distributions of the estimators
are non-standard, in the sense that they are usually normal variance-mixtures.
In particular, the mixing distribution depends on the full sample path of
the diffusion process over the observation time interval. We also present the
more applicable result that, after a suitable data-dependent normalisation,
estimators converge in distribution to a standard Gaussian limit. The results
presented here are joint work with Michael Sørensen, and published in [10].
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1 Introduction

Diffusion processes are used in a variety of fields to model continuous-time
dynamics, for instance, in biology, finance, and neuroscience. However, the
corresponding data are usually only observable at discrete time-points. Except
in a few simple cases, the likelihood function based on the discrete-time obser-
vations is not known explicitly. Thus, for parameter estimation, alternatives
to maximum likelihood estimation must be considered.

Here, we focus on a one-dimensional diffusion process (Xθ
t )t≥0, which solves

a stochastic differential equation of the form

dXθ
t = a(Xθ

t ) dt+ b(Xθ
t , θ) dWt ,

θ ∈ Θ, where (Wt)t≥0 is a standard Wiener process. Let θ0 ∈ Θ denote the
true, unknown parameter. We assume observations of (Xθ0

t )t≥0 over the fixed
time-interval [0, 1] at times tni = i∆n, i = 0, 1, . . . , n, with ∆n = 1/n. In the
following, we put Xt = Xθ0

t and Xn
i = Xθ0

tn
i

.
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For simplicity, we assume that Θ ⊆ R, but an extension of the following
results to a multidimensional parameter would be straightforward. Similarly,
the observation time interval [0, 1] may be generalised to other compact time
intervals by rescaling of the drift and diffusion coefficients a and b.

We consider estimators of the diffusion parameter θ, which are based on
approximate martingale estimating functions. Many well-known estimators
proposed in the literature may be formulated in terms of these estimating
functions, see [12]. Our aim is to give a simple characterisation of the estimating
functions that produce efficient estimators of the diffusion parameter when the
sample size n increases to infinity.

Here, an approximate martingale estimating function Gn(θ) may be written
on the form

Gn(θ) =
n∑
i=1

g(∆n, X
n
i , X

n
i−1, θ) .

It is given by a real-valued function g(t, y, x, θ), which satisfies that for all
θ ∈ Θ, the conditional expectation

E
(
g
(

∆n, X
θ
tn

i
, Xθ

tn
i−1
, θ
)
|Xθ

tn
i−1

)
is of order ∆γ

n, for some constant γ ≥ 2. A Gn-estimator solves the estimating
equation Gn(θ) = 0.

Under other asymptotic scenarios often considered for diffusion processes,
limit distributions of estimators are typically Gaussian, with variances depend-
ing on θ0, see e.g. [2, 4, 6, 11, 12]. Under the sampling scheme considered here,
the limit distributions are usually normal variance-mixture distributions. In
addition to depending on θ0, these distributions may also depend on the full
sample path of the diffusion process over the observation time interval. Esti-
mation and asymptotics under the current observation scheme have previously
been treated by, e.g., [1, 3, 5].

It was shown in [1, 5] that under suitable regularity conditions, the model
and observation scheme considered here satisfy the local asymptotic mixed
normality property with rate

√
n and random asymptotic Fisher information

I(θ0) = 2
∫ 1

0

∂θb(Xs, θ0)2

b2(Xs, θ0) ds .

Here, ∂θb(x, θ) denotes the first partial derivative of b with respect to θ. This
result is used to characterise a consistent estimator θ̂n as rate optimal and
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efficient if
√
n
(
θ̂n − θ0

)
D−→ L

as n→∞, where L = I(θ0)−1/2Z, with Z standard normal distributed and
independent of I(θ0). We may interpret

√
n as the fastest possible rate of

convergence in distribution, and L as the limit distribution with the smallest
possible variance, conditionally on I(θ0).

2 Main results

The work presented in [10] establishes existence, uniqueness, and asymptotic
distribution results concerning consistent Gn-estimators, addressing the ques-
tion of their rate optimality and efficiency. The essence of the main results of
[10], Theorem 3.2 and Corollary 3.4, is summarized in the following Theorem 1,
and Corollaries 1 and 2. Technicalities, as well as the existence and uniqueness
results, are omitted here.
Theorem 1. Assume suitable regularity assumptions. Suppose that

∂yg(0, y, x, θ)|y=x = 0 (1)

for all x and θ. Then, for any consistent Gn-estimator θ̂n,
√
n(θ̂n − θ0) D−→W (θ0)Z

as n→∞, where Z is standard normal distributed and independent of

W (θ0) =

(
2
∫ 1

0
b4(Xs, θ0)∂2

yg(0, Xs, Xs, θ0)2 ds

)1/2

∫ 1

0
∂θb

2(Xs, θ0)∂2
yg(0, Xs, Xs, θ0) ds

. (2)

Here, ∂2
yg denotes the second partial derivative of g with respect to y.

Condition (1) ensures estimators that converge at the optimal rate
√
n. The

proof of Theorem 1 relies on, among others, results from [8, 9], including a
stable central limit theorem, Theorem IX.7.28, from [8]. The expression (2)
reveals that W (θ0) is usually random, and depends on the full sample path of
the diffusion process over the observation time interval. For finite sample sizes,
this sample path is only observed at discrete time-points. We use properties of
stable convergence in distribution to deal with these complications. The result
in Corollary 1 below shows that when suitably normalised, the estimators from
Theorem 1 converge in distribution to a standard Gaussian limit.
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Corollary 1. Assume suitable regularity assumptions, and suppose that (1)
holds. Let θ̂n be any consistent Gn-estimator. Then

Ŵn = −

(
1

∆n

n∑
i=1

g2(∆n, X
n
i , X

n
i−1, θ̂n)

)1/2

n∑
i=1

∂θg(∆n, X
n
i , X

n
i−1, θ̂n)

satisfies that Ŵn
P−→W (θ0), and it holds that
√
n Ŵ−1

n (θ̂n − θ0) D−→ N (0, 1) .

Finally, the additional condition (3) ensures efficiency of the estimators.
Corollary 2. Assume suitable regularity assumptions. Suppose that (1) and

∂2
yg(0, y, x, θ)

∣∣
y=x = Cθ

∂θb
2(x, θ)

b4(x, θ) (3)

hold for all x and θ, where Cθ is a non-zero constant. Then any consistent
Gn-estimator is efficient.

For example, it may be verified that the estimating function given by

g̃(t, y, x, θ) = ∂θb
2(x, θ)

b4(x, θ)
(
(y − x)2 − tb2(x, θ)

)
satisfies (1) and (3), and corresponds to the efficient contrast function in [3],
Theorem 5. It should be noted that conditions (1) and (3) also appear in
[7, 12] under other sampling scenarios. Consequently, a number of approximate
martingale estimating functions discussed in those papers satisfy our rate
optimality and efficiency conditions.

3 Simulation study

The paper [10] also includes a simulation study. Visual comparisons are made
of distributions pertaining to estimators based on two approximate martingale
estimating functions, which are not covered by the theory of [3]. An excerpt
from this simulation study is summarized here. Ten thousand sample paths of
a diffusion process given by

dXθ
t = −2Xθ

t dt+ (θ + (Xθ
t )2)−1/2 dWt (4)
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Figure 1: Q-Q plots comparing the distribution of
√
n Ŵ−1

n (θ̂n − θ0) for the
efficient (left) and inefficient (right) estimator, respectively, to the
standard normal distribution, when n = 1000.

were simulated with θ0 = 1 and X0 = 0, and parameter estimates were
computed using the two estimating functions. These estimating functions were
given by h and h̃, respectively:

h(t, y, x, θ) = (y − (1− 2t)x)2 − (θ + x2)−1t

h̃(t, y, x, θ) = (θ + x2)10h(t, y, x, θ)

The functions h and h̃ both satisfy the rate-optimality condition (1). However,
only h satisfies the efficiency condition (3) for the model (4). Figure 1 shows
Q-Q plots comparing the distribution of

√
n Ŵ−1

n (θ̂n−θ0) for the efficient (left)
and inefficient (right) estimating function, respectively, to the standard normal
distribution, when the sample size is n = 1000. In this example from [10],
it seems that as the sample size increases, the standard normal distribution
becomes a good approximation faster in the efficient case than in the inefficient
case. This is an interesting observation, as the current theory does not speak
about the speed of this convergence.
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