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In the case of traditional Ensemble Kalman Filter (EnKF), it is known that
the filter error does not grow faster than exponentially for a fixed ensemble
size [5]. The question posted in this contribution is whether the upper bound
for the filter error can be improved by using an improved covariance estimator
that comes from the right parameter subspace and has smaller asymptotic
variance. Its effect on Spectral EnKF is explored by a simulation.
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1 Introduction

Estimating of large covariance matrices from small samples is an important
problem in many fields, including spatial statistics, genomics, and ensemble
filtering. One of the prominent applications is data assimilation, where a prior
estimate of a random vector (usually representing a system state) is adjusted
in order to be more consistent with current observations. The revised estimate
is then plugged into a time-evolution model as an initial condition for the
future time prediction. This approach, known as filtering, is used in many
fields including meteorological predictions. A characteristic feature of this
application is a large dimension of the system state (millions or larger), which
results in high computational cost. One algorithm that deals with this problem
is the Ensemble Kalman filter (EnKF), which approximates the mean and the
covariance of the state vector from an ensemble. However, due to the high
computational cost, this ensemble is always very small compared to the state
dimension, and the approximation is very poor. In this contribution, we study
improved estimation of the covariance matrix from a small ensemble, and its
behaviour in high-dimensional EnKF.
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In particular, we consider a very special type of sparse approximation of
a covariance matrix in spectral space, based on nested maximum likelihood
models for diagonal matrices. The improved covariance estimator seems to
have a positive effect in data assimilation, which is illustrated by a simulation.

2 Hierarchical maximum likelihood estimators

Suppose XN = [X1, . . . ,XN ] is a random sample from a distribution on Rn
with density f (x,θ) with unknown parameter vector θ in a parameter space
Θ ⊂ Rp. The maximum likelihood estimator (MLE) θ̂N of the true parameter

θ0 is defined by maximizing the log-likelihood ` (θ|XN ) =
N∑
i=1

log f (Xi,θ) .

Further assume a hierarchical structure of the parameter space,

θ0 ∈ Ψ ⊂ Φ ⊂ Θ,

where Ψ ⊂ Rm, Φ ⊂ Rk, m ≤ k ≤ p. That is, θ can be parametrized by
a smaller number of parameters. We assume that the map ϕ 7→ θ(ϕ) is
one-to-one from Φ to Θ and continuously differentiable. Further assume that
the associated Jacobi matrix ∇ϕθ(ϕ) =

{
∂θi

∂ϕj

}
has full rank for all ϕ ∈ Φ.

We make analogous assumptions about the map ψ 7→ θ(ψ) as well. Moreover,
assume that θ0 = θ(ϕ0) = θ(ψ0) is an interior point of Ψ.

We will also adopt the usual assumptions in the maximum likelihood theory:
(i) the density f determines the parameter θ uniquely in the sense that
f(x,θ1) = f(x,θ2) a.e. if and only if θ1 = θ2, and (ii) f (x,θ) is a sufficiently
smooth function of x and θ (see [6] for details).

Under these assumptions, the error of the estimates is asymptotically normal
√
N
(
θ (ϕ̂N )− θ0) d−→ Np

(
0, Qθ(ϕ0)

)
as N →∞, (1)

√
N
(
θ
(
ψ̂N

)
− θ0

)
d−→ Np

(
0, Qθ(ψ0)

)
as N →∞. (2)

The matrices Qθ(ϕ0) and Qθ(ψ0) represent asymptotic variances of the param-
eters. These matrices are singular, but they can be understood as inverses
of Fisher information matrices in a generalized sense. Their exact forms are
given in [7].

The next theorem shows that for any two nested subspaces Φ and Ψ of the
parameter space containing the true parameter, the asymptotic covariance
matrices of the MLE are ordered in the same way. Hence, by confining the
parameters to a smaller subspace, we can only improve the estimator.
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Theorem 1 ([7]). Under the assumptions listed previously, the matrix Qθ(ψ0)−
Qθ(ϕ0) is positive semidefinite (denoted as Qθ(ϕ0) ≤ Qθ(ψ0)).

In addition, if U ∼ Np
(
0, Qθ(ϕ0)

)
and V ∼ Np

(
0, Qθ(ψ0)

)
are random

vectors with the asymptotic distributions of the estimates θ (ϕ̂N ) and θ(ψ̂N ),
then

E |U |2 = 1
N

TrQθ(ϕ0) ≤
1
N

TrQθ(ψ0) = E |V |2 , (3)

where |V | =
(
V >V

)1/2 is the standard Euclidean norm in Rp.

2.1 One specific hierarchical model for a covariance matrix

Consider three particular nested models for a diagonal covariance matrix. Such
models appear to be useful in meteorological practice but more about our
motivation will be said in the next section. The models have the form

• D(n) = diag{di, i = 1, . . . , n}

• D(3) = diag{(c1 − c2λi)−1(−λi)−α, i = 1, . . . , n}

• D(2) = diag{c(−λi)−α, i = 1, . . . , n},

with {λi}ni=1 being the eigenvalues of a two-dimensional Laplace operator. The
superscripts designate the number of parameters of each model. Under the
normality assumption, all these parameters can be estimated from a random
sample by the maximum likelihood method. Let D̂(n), D̂(3) and D̂(2) be the
resulting estimates. Notice that D̂(n) is formed simply by the diagonal of sample
covariance. The asymptotic hierarchical structure of cov(D̂(n)), cov(D̂(3)) and
cov(D̂(2)) is theoretically described in the previous section. The exact form of
these estimators and their Fisher information matrices can be found in [7].

However, it is difficult to say something general about the MLEs based on
small samples (although they are usually more of interest).

The simulations reported in [7] suggest that the hierarchical structure of
the error (3) persists also for small samples. Here we use the hierarchical
covariance models in data assimilation.

3 Covariance estimators in data assimilation

Our main objective is to demonstrate the positive effect of the improved
covariance estimators D̂(3) and D̂(2) in data assimilation. First, let us briefly
recall the Ensemble Kalman Filter (EnKF) [2], in the simple case when
the whole state is observed. At the beginning, the distribution of the true
state vector Xt is represented by a “forecast ensemble” X1

f , . . . ,X
N
f . The
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sample covariance of the forecast ensemble is denoted Ĉf . Using the perturbed
observations y1, . . . ,yN (whose error has covariance R), the forecast ensemble is
adjusted and results in an “analysis ensemble” X1

a, . . . ,X
N
a , which is supposed

to be “closer” to Xt. Its sample covariance is denoted Ĉa. The process is
governed by the following equations:

Xj
a = Xj

f + Ĉf

(
Ĉf +R

)−1 (
yj −Xj

f

)
j = 1, . . . , N (4)

Ĉa =
(
I − Ĉf

(
Ĉf +R

)−1
)
Ĉf . (5)

Each member of the analysis ensemble is then pushed forward in time by a
function η(·), which represents the evolution of the process X in time. This
shifted ensemble becomes the forecast, and the whole cycle runs all over again.

It is possible to represent the covariance matrix Ĉf in spectral space [1].
Under the assumption of covariance stationarity, the spectral covariance matrix
is diagonal with variances of the coefficients of the expansion of the state in
the spectral basis. Filtering methods that take advantage of this result and
perform the whole data assimilation process in spectral space, using only
the diagonal of spectral sample covariance matrix for Ĉf , were studied in [4].
Under the normality assumption, this corresponds to improving the spectral
sample covariance by using the maximum likelihood estimator D̂(n) from
Subsection 2.1. The question is, whether the filter will perform better when
using even more precise estimators like D̂(3) and D̂(2). The improvement can
be achieved by searching for the MLE in a correct subspace (or close to it).
However, based on climatological data, the power model D̂(2) seems to be
reasonable [3].

The critical point of every filtering method is its long-time behaviour and
stability, especially for a small ensemble. In the case of traditional EnKF
(given by equation (4) and (5)), the filter error does not grow faster than
exponentially for a fixed ensemble size [5]. The question is, whether the upper
bound for the filter error can be improved by using an improved covariance
estimator that comes from the right subspace. This is the subject of our current
research. The following simulation suggests that the answer may be positive.

The simulation setting was as follows. First, an initial forecast ensemble
of size N = 5 and the initial true system state were generated from Nn(0, C)
with n = 100 and C = FDF>, where F is a Fourier transform and D =
diag{c(−λi)−α, i = 1, . . . , n} with c = 50 and α = 1.5. In each cycle, the
observations yj = Xt+ξj were generated with ξj ∼ Nn(0, R) and R = 0.0064·I
and then assimilated with the forecast ensemble. The analysis part was done
in the spectral space, following [4], where the theoretical covariance matrix Df

is assumed to be diagonal. After the assimilation part, the analysis ensemble
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Figure 1: Mean square errors of the analysis ensemble mean.

was propagated in time by the model η(Xa) = AXa + b with A = 0.9 · I
and b ∼ Nn(0, C). The cycle consisting of analysis and propagation step then
runs all over again. Three parallel filters were run with distinct estimators of
Df used in the analysis step. The estimators were D̂(n)

f (denoted sam), D̂(3)
f

(MLE 3p) and D̂
(2)
f (MLE 2p).

In each of 50 cycles, the analysis ensemble was summarized into its mean
X̄a = 1

N

∑N
j=1X

j
a and the mean square error

1
n

n∑
i=1

(
X̄j
a(i)−Xt(i)

)2

was plotted for every cycle. We denoted by X̄j
a(i) the entries of X̄j

a. As we
can see at Fig. 1, the analysis that uses the more precise covariance estimator
is closer to the true state vector (in terms of MSE). However, the performance
of the analysis mean is not the only criterion. The stability of the analysis
covariance Ca is also important. In Fig. 2, we can see a comparison of spectral
representations of four matrices. The true filtering covariance descents from
the original covariance C by propagation in time and by assimilation using
the expression (5) (where Ĉf is substituted by the matrix Cf resulting from
the time-propagation step). The other three matrices are distinct estimates of
Df based on the analysis ensemble after the last cycle. The estimate based
on sample covariance is very rough. The MLEs follow the proper trend and
provide stable estimates.

This short simulation indicates that the error of the EnKF is smaller when a
better covariance estimate is used while the analysis covariance is stable. The
theoretical background of this effect is a subject of further research.
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Figure 2: Spectral representations of the true filtering covariance and the
analysis covariance matrices (the first 40 elements).
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