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Independent component analysis (ICA) is a popular means of dimension
reduction for vector-valued random variables. In this short note we review
its extension to arbitrary tensor-valued random variables by considering the
special case of two dimensions where the tensors are simply matrices.
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1 Matrix independent component model

For an introduction to classical vector-valued independent component analysis
(ICA) the reader is referred to [3]. The tensorial ICA theory we next review
was first introduced in [6] and further investigated in [7].

Let X ∈ Rp1×p2 be a random matrix from the matrix location-scale model

X = µ + Ω1ZΩT
2 , (1)

where the location matrix µ ∈ Rp1×p2 and the non-singular mixing matrices
Ω1 ∈ Rp1×p1 and Ω2 ∈ Rp2×p2 are unknown parameters and Z ∈ Rp1×p2 is
an unobserved random matrix with finite joint fourth moments. Defining
vec : Rp1×p2 → Rp1p2 as the function that stacks the columns of its argument
into a vector, the model (1) can be written as

vec (X) = vec (µ) + (Ω2 ⊗Ω1) vec (Z) , (2)

where ⊗ is the Kronecker product. Thus (1) can also be thought as a structured
location-scale model (Kronecker model) for random vectors.

We will next describe conditions under which the model (1) is well-defined.
For any non-singular A1 ∈ Rp1×p1 and A2 ∈ Rp2×p2 it can be written as

X = µ +
(
Ω1A−1

1
) (

A1ZAT
2

) (
Ω2A−1

2
)T = µ + Ω∗

1Z∗ (Ω∗
2) T ,

showing that the parameters are not identifiable as such. Note that we can never
achieve full identifiability as for any non-zero scalar β the maps Ω1 7→ βΩ1 and
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Ω2 7→ β−1Ω2 preserve the model. In the following we will refer to identifiability
up to this proportionality as proportional identifiability. As a first step towards
proportional identifiability we set the following constraints for Z.

E [vec (Z)] = 0p1p2 and Cov [vec (Z)] = Ip1p2 .

The first constraint fixes the location matrix µ and the second makes both Ω1
and Ω2 proportionally identifiable up to orthogonal A1 and A2.

To impose more structure the model can be equipped with additional as-
sumptions on the latent matrix Z. The classical choice is to assume that
vec(Z) ∼ N (0p1p2 , Ip1p2), resulting in a general matrix normal distribution for
X. The normal model can further be generalized in two directions. Focusing
on the orthogonal invariance of the standard normal distribution leads us to
consider the class of spherical random matrices satisfying Z ∼ U1ZUT

2 for
all orthogonal U1 ∈ Rp1×p1 ,U2 ∈ Rp2×p2 and this in turn yields a matrix
elliptical distribution for X, see [4] for the previous two models.

The second generalization is based on another key characteristic of the
standard multivariate normal distribution, the equivalence of uncorrelatedness
and independence, and equips Z with the following assumption.

A1. The components of Z are mutually independent.

While assumption A1 is rather strong, actually strong enough to guarantee the
proportional identifiability of Z in (1) up to some trivialities when paired with
A2 below, it is still a natural choice in applications where the components of
Z can each be thought to model one separate aspect of the phenomenon which
then combine independently to produce the observation X.

The Skitovich-Darmois theorem [5] states that if a set of independent random
variables can be combined to yield non-trivial linear combinations that are
itself independent they must all be normally distributed. Thus we must further
restrict the presence of multivariate normal distribution in the latent matrix
to avoid A1ZAT

2 having independent components for non-trivial A1 and A2.

A2. At most one row of Z has a multivariate normal distribution and at most
one column of Z has a multivariate normal distribution.

Assumptions A1 and A2 now jointly guarantee that Ω1 and Ω2 are proportion-
ally identifiable up to A1 and A2 containing a single ±1 in each of their rows
and columns. Consequently the matrix Z can be estimated up to the order
and signs of its rows and columns, a defect that is usually of no consequence
in practice.

Definition 1. We say that X ∈ Rp1×p2 obeys the matrix independent compo-
nent model (MICM) if it satisfies (1) along with assumptions A1 and A2.
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To wrap everything up, in matrix independent component analysis we assume
that X1, . . . ,Xn is a random sample from the distribution of X obeying MICM
and our objective is the estimation of the matrices Z1, . . . ,Zn.

2 The estimation of Z

Let X obey MICM. Centering the random matrix as X 7→ X−E [X] shows that
without loss of generality we may assume in the following that vec(µ) = 0p1p2 .

A key notion in the model is that, instead of treating the elements of Z
separately, we consider them in an aggregate sort of way via their corresponding
rows and columns. As an example take assumptions A1 and A2, the first of
which can be written equivalently as “the rows of Z are mutually independent
and the columns of Z are mutually independent”. The same thought is also
reflected in our definitions of the row and column covariance matrices,

Σ1 (X) = 1
p2
E
[
XXT

]
and Σ2 (X) = 1

p1
E
[
XT X

]
.

The matrices Σ1 (X) and Σ2 (X) can be interpreted as the average covari-
ance matrices of the p2 columns and p1 rows of X, respectively. Under the
independent component model they further enjoy the “equivariance property”
described by the next lemma.

Lemma 1. Let X obey MICM. Then the inverse square roots of the row and
column covariance matrix satisfy

Σ1 (X)−1/2 = p
1/2
2

‖Ω2‖F
U1Ω−1

1 and Σ2 (X)−1/2 = p
1/2
1

‖Ω1‖F
U2Ω−1

2 ,

for some orthogonal matrices U1 ∈ Rp1×p1 and U2 ∈ Rp2×p2 , where ‖ · ‖F is
the Frobenius (Euclidean) norm.

For the proof of Lemma 1 and all other results in this review see [6]. Lemma
1 immediately yields the first step towards the estimation of Z:

Lemma 2. Let X obey MICM. Then we have(
Σ1 (X)−1/2

)
X
(
Σ2 (X)−1/2

)
T = γU1ZUT

2 ,

with orthogonal U1 ∈ Rp1×p1 and U2 ∈ Rp2×p2 and γ = (p1p2)1/2‖Ω2⊗Ω1‖−1
F .

According to Lemma 2 the two-sided standardization of X reduces the
problem of estimating Ω1 and Ω2 to the easier task of estimating two orthogonal
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matrices. In the following we denote by Xst the standardized matrix on the
left-hand side of Lemma 2.

Our method for estimating U1 and U2 is based on an extension of a mul-
tivariate ICA method called fourth order blind identification (FOBI) [1] and
will hereafter be referred to as MFOBI. Heuristically ICA can be thought of
as the maximization of non-normality and FOBI achieves it via considering a
matrix measuring kurtosis, a classical indicator of non-normality. Sure enough,
we define both row and column versions of the matrix.

B1 (X) = 1
p2
E
[
XXT XXT

]
and B2 (X) = 1

p1
E
[
XT XXT X

]
.

A key property of B1 (X) and B2 (X) with respect to our problem, diagonality
under independence, is described in the next lemma.

Lemma 3. Let the random matrix Z ∈ Rp1×p2 have mutually independent
components with zero means, unit variances and finite joint fourth moments.
Then we have

B1(Z) = (p1 + p2 + 1) Ip1 + diag(κ1•, . . . , κp1•)
B2(Z) = (p1 + p2 + 1) Ip2 + diag(κ•1, . . . , κ•p2),

where κi• is the ith row mean and κ•j is the jth column mean of the kurtosis
matrix κ =

(
E
[
z4

ij − 3
])

ij
.

Both matrices B1 (X) and B2 (X) are orthogonally equivariant and we
obtain the following.

Lemma 4. Let X obey MICM. Then we have

B1(Xst) = γ4U1B1(Z)UT
1 and B2(Xst) = γ4U2B2(Z)UT

2 ,

where B1(Z) and B2(Z) are diagonal by Lemma 3.

The two equations in Lemma 4 are the eigendecompositions of B1(Xst)
and B2(Xst) and to guarantee the consistent estimation of U1 and U2, the
corresponding eigenspectra must be distinct. In the light of Lemma 3 this
requirement takes the following form.

A3. The row means of κ are distinct and the column means of κ are distinct,
where κ =

(
E
[
z4

ij − 3
])

ij
is the kurtosis matrix of the latent Z.

Assumption A3 is a stronger version of assumption A2 and in particular says
that no two rows or columns of Z may consist solely of random variables with
identical distributions. Our main result is then the following.
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Theorem 1. Let X obey MICM and satisfy assumption A3. Further let
V1 ∈ Rp1×p1 and V2 ∈ Rp2×p2 contain the eigenvectors of B1(Xst) and
B2(Xst), respectively, as their columns. Then we have

VT
1 XstV2 = γZ ∝ Z.

The MFOBI solution of Theorem 1 enables the estimation of Z up to the
scaling factor γ which is usually satisfactory enough, the shape and other
higher-order properties of the components being of greater interest than their
scales. In practice the MFOBI solution is obtained by replacing the expected
values by the corresponding sample estimates. After the estimation of Z a
further problem is the choosing of the most “interesting” components among
the p1p2 elements of Z. Our kurtosis-based approach immediately leads to
consider the components with extremal kurtosis, or to stay more in line with
the spirit of the method, the rows and columns with the highest and lowest
mean kurtoses. However, as the classical kurtosis is a very non-robust statistic
the choice of a suitable criterion is still an open question.

3 Discussion

The näıve approach to model (1) is to vectorize it, resulting into (2), and
proceed with standard methods of vector-valued ICA. However, this completely
ignores the Kronecker structure of the mixing matrix Ω2 ⊗Ω1 and the price
we pay for our negligence further comes in the form of stronger assumptions
and increased computational cost. As an example, consider applying MFOBI
to (1) versus applying FOBI to (2). Assumption A1 takes the same form for
both methods but the counterpart of assumption A2 for FOBI is much more
strict. Namely, it requires that at most one element of vec(Z) has a normal
distribution while in MFOBI the majority of the elements of Z can be normal
if conveniently located. Similarly our assumption A3 and its vector-valued
analogy, stating that the kurtoses of the elements of vec(Z) are distinct, share
the same relationship.

In order to compare the computational costs of the two methods we focus
for simplicity only on the computationally most intensive part of the algo-
rithms, the eigendecompositions. For X ∈ Rp1×p2 FOBI has to perform two
eigendecompositions of a p1p2 × p1p2 matrix while MFOBI requires the eigen-
decompositions of two p1 × p1 and two p2 × p2 matrices. In essence MFOBI
“divides” the computational load into a larger number of smaller operations,
lessening the overall complexity.

In [7] an extension of a second classical ICA method, joint approximate
diagonalization of eigen-matrices (JADE) [2] for tensor-valued data was intro-
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duced. Called TJADE, the method shares the standardization step of MFOBI
(or more accurately, of TFOBI, its general tensor-valued extension) but ap-
proaches the estimation of the orthogonal matrices differently. In TJADE,
instead of diagonalizing a single kurtosis matrix, we diagonalize several of them
at once, essentially using more information in the estimation (and consequently
increasing the computational burden as well). The implementations of both
methods along with several other tensor extensions of classical methods can
be found in the R-package tensorBSS [8].

Interestingly, restricting to matrix-valued observations only in this review
serves more than just instructional purposes. In [6], [7] it is shown that the
general tensor versions of the methods can be reduced to the matrix case.
Similarly it can be shown that for the limiting distributions of the corresponding
estimators it is sufficient to consider only the matrix case.

This note has been left devoid of examples and applications of the discussed
methodology and instead several can be found, for example, in [6, 7].
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