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In applications the properties of a stochastic feature often change gradually
rather than abruptly, that is: after a constant phase for some time they slowly
start to vary. In this paper we discuss the localisation of a gradual change
point in the jump characteristic of a discretely observed Itō semimartingale.
We propose a new measure of time variation for the jump behaviour of the
process. Based on weak convergence of a suitable stochastic process we derive
an estimator for the first point in time where the jump characteristic changes.
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1 Introduction

Stochastic processes in continuous time are widely used in science nowadays, as
they allow for a flexible modeling of the evolution of various real-life phenomena
over time. Speaking of mathematical finance, of particular interest is the family
of semimartingales, which is theoretically appealing as it satisfies a certain
condition on the absence of arbitrage in financial markets and yet is rich enough
to reproduce stylized facts from empirical finance such as volatility clustering,
leverage effects or jumps. For this reason, the development of statistical tools
modeled by discretely observed Itō semimartingales has been a major topic
over the last years, both regarding the estimation of crucial quantities used
for model calibration purposes and with a view on tests to check whether a
certain model fits the data well. For a detailed overview of the state of the art
we refer to the recent monographs by [4] and [1].

In the following, we are interested in the evolution of the jump behaviour over
time in a completely non-parametric setting where we assume only structural
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conditions on the characteristic triplet of the underlying Itō semimartingale.
To be precise, let X = (Xt)t≥0 be an Itō semimartingale with a decomposition

Xt = X0 +
∫ t

0
bs ds+

∫ t

0
σs dWs +

∫ t

0

∫
R
z1{|z|≤1}(µ− µ̄)(ds, dz)

+
∫ t

0

∫
R
z1{|z|>1}µ(ds, dz), (1.1)

where W is a standard Brownian motion, µ is a Poisson random measure on
R+ × R, and the predictable compensator µ̄ satisfies µ̄(ds, dz) = ds νs(dz).
The main quantity of interest is the kernel νs which controls the number
and the size of the jumps around time s. In [2] the authors are interested
in the detection of abrupt changes in the jump measure of X. Based on
high-frequency observations Xi∆n

, i = 0, . . . , n, with ∆n → 0 they construct a
test for a constant ν against the alternative

ν(n)
s = 1{s<bnθ0c∆n}ν1 + 1{s≥bnθ0c∆n}ν2.

In the sequel, we will deal with gradual (smooth, continuous) changes of νs
which basically means that νs is a non-constant function in s ∈ R+. We discuss
how and how well the first point in time where the jump behaviour changes
(gradually) can be estimated. To this end, we introduce the formal setup in
Section 2 where we also define a measure of time variation which is used to
detect changes in the jump characteristic. Section 3 is concerned with weak
convergence of a standardized version of an estimator for this measure. In
Section 4 we use this result to derive an estimator of the first change point for
the jump behaviour. The proofs of the results presented in this paper can be
found in [3].

2 The basic assumptions and a measure of gradual
changes

In the sequel let X(n) = (X(n)
t )t≥0 be an Itō semimartingale of the form (1.1)

with characteristic triplet (b(n)
s , σ(n)

s , ν(n)
s ) for each n ∈ N. We are interested in

investigating gradual changes in the evolution of the jump behaviour and we
assume throughout this paper that there is a driving law behind this evolution
which is common for all n ∈ N. Formally, we introduce a transition kernel
g(y, dz) from ([0, 1],B([0, 1])) into (R,B) such that

ν(n)
s (dz) = g

( s

n∆n
, dz
)
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for s ∈ [0, n∆n]. This transition kernel shall be an element of the set G to be
defined below. Throughout the paper B(A) denotes the trace σ-algebra on a
set A ⊂ R with respect to the Borel σ-algebra B of R.

Assumption 1. Let G denote the set of all transition kernels g(·, dz) from
([0, 1],B([0, 1])) into (R,B) such that

(1) For each y ∈ [0, 1] the measure g(y, dz) does not charge {0}, i.e. g(y, {0}) = 0.
(2) The function y 7→

∫
(1 ∧ z2)g(y, dz) is bounded on the interval [0, 1].

(3) If

I(z) :=
{

[z,∞), for z > 0
(−∞, z], for z < 0

denotes one-sided intervals and

g(y, z) := g(y, I(z)) =
∫
I(z)

g(y, dx); (y, z) ∈ [0, 1]× R \ {0},

then for every z ∈ R \ {0} there exists a finite set M (z) = {t(z)1 , . . . , t
(z)
nz | nz ∈

N} ⊂ [0, 1], such that the function y 7→ g(y, z) is continuous on [0, 1] \M (z).
(4) For each y ∈ [0, 1] the measure g(y, dz) is absolutely continuous with respect to

the Lebesgue measure with density z 7→ h(y, z), where the measurable function
h : ([0, 1]×R,B([0, 1])⊗ B)→ (R,B) is continuously differentiable with respect
to z ∈ R \ {0} for fixed y ∈ [0, 1]. The function h(y, z) and its derivative will
be denoted by hy(z) and h′y(z), respectively. Furthermore, we assume for each
ε > 0 that

sup
y∈[0,1]

sup
z∈Mε

(
hy(z) + |h′y(z)|

)
<∞,

where Mε = (−∞,−ε] ∪ [ε,∞).

In order to investigate gradual changes in the jump behaviour of the under-
lying process we follow [5] and consider a measure of time variation for the
jump behaviour which is defined by

D(ζ, θ, z) :=
ζ∫

0

g(y, z)dy − ζ

θ

θ∫
0

g(y, z)dy, (2.1)

where (ζ, θ, z) ∈ C × R \ {0} and

C := {(ζ, θ) ∈ [0, 1]2 | ζ ≤ θ}. (2.2)
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Here and throughout this paper we use the convention 0
0 := 1. The time

varying measure defined in (2.1) is indeed suitable for the detection of gradual
changes in the jump characteristic of the underlying process, because one can
show that the jump behaviour corresponding to the first bnθc observations is
identical for some θ ∈ [0, 1] if and only if D(ζ, θ, z) ≡ 0 for all 0 ≤ ζ ≤ θ and
z ∈ R \ {0} (see [3]).

We conclude this section with the main assumption for the characteristics
of an Itō semimartingale which will be used throughout this paper.

Assumption 2. For each n ∈ N let X(n) denote an Itō semimartingale of the
form (1.1) with characteristics (b(n)

s , σ
(n)
s , ν

(n)
s ) defined on the probability space

(Ω,F ,P) that satisfies

(a) There exists a g ∈ G such that

ν(n)
s (dz) = g

( s

n∆n
, dz
)

holds for all s ∈ [0, n∆n] and all n ∈ N.

(b) The drift b(n)
s and the volatility σ(n)

s are predictable processes and satisfy

sup
n∈N

sup
s∈R+

(
E|b(n)

s |α ∨ E|σ(n)
s |p

)
<∞,

for some p > 2, with α = 3p/(p+ 4).

(c) The observation scheme {X(n)
i∆n
| i = 0, . . . , n} satisfies

∆n → 0, n∆n →∞, and n∆1+τ
n → 0,

for τ = (p− 2)/(p+ 1) ∈ (0, 1).

3 An estimator for the measure of time variation and
weak convergence

In order to estimate the measure of time variation introduced in (2.1) we use
the sequential empirical tail integral process defined by

Un(θ, z) = 1
n∆n

bnθc∑
j=1

1{∆n
j
X(n)∈I(z)},
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where ∆n
jX

(n) = X
(n)
j∆n
−X(n)

(j−1)∆n
, θ ∈ [0, 1] and z ∈ R \ {0}. An estimate

for the measure of time variation defined in (2.1) is then given by

Dn(ζ, θ, z) := Un(ζ, z)− ζ

θ
Un(θ, z), (ζ, θ, z) ∈ C × R \ {0}, (3.1)

where the set C is defined in (2.2). The following theorem establishes consis-
tency of Dn as it shows weak convergence of the process

Hn(ζ, θ, z) :=
√
n∆n(Dn(ζ, θ, z)−D(ζ, θ, z)). (3.2)

with values in `∞(Bε), where Bε = C ×Mε.

Theorem 1. If Assumption 2 is satisfied, then the process Hn defined in (3.2)
satisfies Hn  H in `∞(Bε) for any ε > 0, where H is a tight mean zero
Gaussian process with covariance function

Cov(H(ζ1, θ1, z1),H(ζ2, θ2, z2)) =

=
ζ1∧ζ2∫
0

g(y, I(z1) ∩ I(z2))dy − ζ1
θ1

ζ2∧θ1∫
0

g(y, I(z1) ∩ I(z2))dy

− ζ2
θ2

ζ1∧θ2∫
0

g(y, I(z1) ∩ I(z2))dy + ζ1ζ2
θ1θ2

θ1∧θ2∫
0

g(y, I(z1) ∩ I(z2))dy.

4 A consistent estimator for the gradual change point

If one defines
D(ε)(θ) := sup

|z|≥ε
sup

0≤ζ≤θ′≤θ
|D(ζ, θ′, z)|,

for some pre-specified constant ε > 0, one can characterize the existence of a
change point as follows: There exists a gradual change in the behaviour of the
jumps larger than ε of the process (1.1) if and only if D(ε)(1) > 0. Our aim is
to construct an estimator for the first point where the jump behaviour changes
(gradually). For this purpose we define

θ
(ε)
0 := inf

{
θ ∈ [0, 1] | D(ε)(θ) > 0

}
,

where we set inf ∅ := 1. We call θ(ε)
0 the change point of the jumps larger than

ε of the underlying process (1.1). Intuitively, the estimation of θ(ε)
0 becomes

more difficult the flatter the curve θ 7→ D(ε)(θ) is at θ(ε)
0 . Therefore, we describe
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the curvature of θ 7→ D(ε)(θ) by a local polynomial behaviour of the function
D(ε)(θ) for values θ > θ(ε)

0 . More precisely, we assume throughout this section
that θ(ε)

0 < 1 and that there exist constants λ, η,$, c(ε) > 0 such that D(ε)

admits an expansion of the form

D(ε)(θ) = c(ε)
(
θ − θ(ε)

0
)$ + ℵ(θ) (4.1)

for all θ ∈ [θ(ε)
0 , θ(ε)

0 + λ], where the remainder term satisfies |ℵ(θ)| ≤ K
(
θ −

θ(ε)
0
)$+η for some K > 0. By Theorem 1 the process Dn(ζ, θ, z) from (3.1) is

a consistent estimator of D(ζ, θ, z). Therefore we set

D(ε)
n (θ) := sup

|z|≥ε
sup

0≤ζ≤θ′≤θ
|Dn(ζ, θ′, z)|.

The construction of an estimator for θ(ε)
0 utilizes the fact that (n∆n)1/2D(ε)

n (θ)→
∞ in probability for any θ ∈ (θ(ε)

0 , 1]. Moreover, for θ ∈ [0, θ(ε)
0 ] we have

(n∆n)1/2D(ε)
n (θ) = OP(1) since this quantity converges weakly. Therefore, we

consider the statistic

r(ε)
n (θ) := 1{(n∆n)1/2D(ε)

n (θ)≤κn}
,

for a deterministic sequence κn →∞. From the previous discussion we expect

r(ε)
n (θ)→

{
1, if θ ≤ θ(ε)

0

0, if θ > θ
(ε)
0

in probability if the threshold level κn is chosen appropriately. Consequently,
we define the estimator for the change point by

θ̂(ε)
n = θ̂(ε)

n (κn) :=
1∫

0

r(ε)
n (θ)dθ.

The following result establishes consistency of the estimator θ̂(ε)
n under rather

mild assumptions on the sequence (κn)n∈N.

Theorem 2. If Assumption 2 is satisfied, θ(ε)
0 < 1, and (4.1) holds for some

$ > 0, then
θ̂(ε)
n − θ

(ε)
0 = OP

(( κn√
n∆n

)1/$)
,

for any sequence κn →∞ with κn/
√
n∆n → 0.
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Theorem 2 makes the heuristic argument above more precise. A lower degree
of smoothness in θ(ε)

0 yields a better rate of convergence of the estimator.
Moreover, the slower the threshold level κn converges to infinity the better
the rate of convergence. In [3] the authors discuss a data-driven choice of the
threshold κn for which the probability for over- and underestimation of θ(ε)

0
can be controlled.
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