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Post-selection inference has been considered a crucial topic in data analysis. In
this article, we develop a new method to obtain correct inference after model
selection by the Akaike’s information criterion [1] in linear regression models.
Confidence intervals can be calculated by incorporating the randomness of
the model selection in the distribution of the parameter estimators which act
as pivotal quantities. Simulation results show the accuracy of the proposed
method.
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1 Introduction

Consider the linear regression setting where the true model is of the form

YYY = µµµ + ϵϵϵ (1)

where µµµ ∈ Rn and ϵϵϵ ∼ N(000, σ2IIIn) and we assume that σ2 is known. For a
given predictor matrix XXX = (xxx1, . . . ,xxxp) ∈ Rn×p, we wish to model µµµ by a
linear function of all predictors, XbXbXb, or just a subset of predictors, XXXMbbbM ,
where XXXM contains as columnsthe predictors with indices in M ⊆ {1, . . . , p}.
This setting can be considered as a nonparametric setting because there is
no assumption about whether the true model is also linear for a true coeffi-
cients vector βββ0. The least squares estimator in linear regression is defined
as β̂ββM = (XXXt

MXXXM )−1XXXt
MYYY which minimizes the expected squared error. In

other words, β̂ββM is the estimator of βββM = (XXXt
MXXXM )−1XXXt

Mµµµ.
Regarding the inference, one can easily use classical confidence intervals (in

any submodel) based on the normality of the observations. The difficulty arises
when one selects a model based on a criterion from a collection of potential
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models M and wants to do inference for the parameters in the selected model.
Since this selection is data-driven, it is random. Ignoring this randomness may
lead to incorrect inference. One way to incorporate the selection randomness
in inference is using conditional inference, by conditioning on the selected
model.

When one imposes the assumption that there exist a true model with pa-
rameters βββ0, [7, 8] showed that the distribution of a post-selection estimator
can not be estimated in a uniform way. Considering model (1), [2] proposed
a method to calculate confidence intervals which are valid irrespective of the
selection criterion (Posi method), hence their confidence intervals are conser-
vative for a specific model selection criterion. Their confidence intervals are
for parameters in the selected model rather than the true value of the pa-
rameters. [6] studied post-selection inference for lasso in high dimensional
data. [9] generalized the results to sequential regression procedures such as
forward stepwise regression and least angle regression. [3] used the asymp-
totic distribution to calculate confidence intervals for the model parameters
in general likelihood models when they assumed that there exits a true model
(Asymp-AIC method).

In this article, we study post-selection inference for the population param-
eters after using AIC for model selection without assuming a true model to
exist. Assuming σ2 is known, AIC for model M is defined as

AIC(M) = ∥YYY − XXXMβ̂ββM ∥2 + 2σ2|M |. (2)

Knowledge about σ2 may seem restrictive, but [5] showed that in this setting
inference without knowing σ2 is impossible. The main reason is that taking
the variance estimation into account leads to insufficient information about
the parameters for inference. Our simulations show that even we estimate the
σ2 using the same data, the results are still valid. When σ2 is unknown, the
AIC score for each model is different from the score in (2). In that case, one
estimates σ2 within each model by σ̂2 = ∥YYY −XXXMβ̂ββM ∥2/n which leads to the
following formula for AIC for model M :

AIC(M, σ2) = log(∥YYY − XXXMβ̂ββM ∥2) + 2(|M | + 1)
n

. (3)

In a set of models M the model with the smallest value of (2), or (3), is the
best model according to AIC in the considered case.
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2 Post-selection inference

When AIC selects a model, it defines an event which we call the selection
event. If AIC selects model M , i.e. Maic = M , then

AIC(M) ≤ AIC(Mi), ∀Mi ∈ M.

Define PPP M = XXXM (XXXt
MXXXM )−1XXXt

M . Using (2) we can represent the selection
event as

SM (M) =
∩

Mi∈M

{
∥(IIIn − PPP Mi

)YYY ∥2 + 2σ2|Mi| − ∥(IIIn − PPP M )YYY ∥2 − 2σ2|M | ≥ 0
}

=
∩

Mi∈M

{
YYY t(PPP M − PPP Mi)YYY − 2σ2(|M | − |Mi|) ≥ 0

}
. (4)

Similarly when (3) is used for selection, the event can be expressed as

Sσ2

M (M) =
∩

Mi∈M

log


∥∥∥YYY − XXXMi

β̂ββMi

∥∥∥2

∥∥∥YYY − XXXMβ̂ββM

∥∥∥2

 ≥ 2(|M | − |Mi|)
n


=

∩
Mi∈M

{
YYY t(IIIn − PPP Mi)YYY · κMi − YYY t(IIIn − PPP M )YYY · κM ≥ 0

}
,(5)

where κMi
= exp (2(|Mi|)/n).

To obtain correct confidence intervals after model selection, we use condi-
tional inference. In other words, for inference for a parameter of the form ηηηt

Mµµµ
in the selected model where ηηηM ∈ Rn and is specified, we need to investigate
the distribution of ηηηt

MYYY | {Maic = M} which is equivalent to working with

ηηηt
MYYY | SM (M).

It is possible to rewrite SM (M) in terms of ηηηt
MYYY . Proofs for the following

results can be found in [4].

Lemma 1. Define T = ηηηt
MYYY and ZZZ = YYY − wwwT where www = ηηηM (ηηηt

MηηηM )−1 (T
and ZZZ are independent). Then

SM (M) =
∩

Mi∈M
{ T twwwtDDDMiwwwT + 2T twwwDDDMiZZZ

+ZZZtDDDMi
ZZZ − 2σ2(|M | − |Mi|) ≥ 0} (6)
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and

Sσ2

M (M) =
∩

Mi∈M
{ T twwwtRRRMiwwwTκMi − T twwwtRRRMwwwTκM

+2T twwwRRRMiZZZκMi − 2T twwwRRRMZZZκM

+ZZZtRRRMi
ZZZκMi

− ZZZtRRRMZZZκM ≥ 0} (7)

where DDDMi
= PPP M − PPP Mi

and RRRMi
= IIIn − PPP Mi

.

As expressions (6) and (7) show, the selection event can be written via
quadratic functions of T . For the selection event in (6), define

ai = wwwtDDDMi
www, bi = 2wwwDDDMi

ZZZ, ci = ZZZtDDDMi
ZZZ − 2σ2(|M | − |Mi|),

and for the selection event in (7),

ai = wwwtRRRMiwwwκMi − wwwtRRRMwwwκM , bi = 2(wwwRRRMiZZZκMi − wwwRRRMZZZκM ),
ci = ZZZtRRRMiZZZκMi − ZZZtRRRMZZZκM .

For both selection events in (6) and (7), it is obvious that the selection event
can be written as ∩

Mi∈M
{aiT

2 + biT + ci ≥ 0}.

These inequalities lead to allowable values for T , namely, of the form IZZZ
M (M) =

∪l
i=1(ai(ZZZ), bi(ZZZ)). So, the estimator T for the population parameter ηηηtµµµ is a

normal random variable which is restricted in IZZZ
M (M).

Denote the standard normal CDF by Φ(x) and also denote the CDF of
a N(µ, σ2) random variable truncated to D = ∪l

i=1(ai, bi) by F (·; µ, σ2, D)
which can be written as, for x ∈ (ar, br)

F (x; µ, σ2, D) =
∑r−1

i=1 pi + Φ((x − µ)/σ) − Φ((ar − µ)/σ)∑l
i=1 pi

,

(8)

where pi = Φ((bi − µ)/σ) − Φ((ai − µ)/σ). The following result shows how we
can use (8) as a pivotal quantity.

Result 1: Let ηηη ∈ Rn be fixed, T = ηηηtYYY and the selection event is SM (M),
Then

F
(

T ;ηηηtµµµ, σ2 ∥ηηη∥2
, IZZZ

M (M)
)

| SM (M) ∼ Unif (0, 1). (9)
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In post-selection inference, we are interested in constructing confidence in-
tervals for parameters in the selected model. We mainly focus on a one-
dimensional parameter. For parameters in the selected model, we construct
confidence intervals for each parameter separately. In general, for ηηηtµµµ ∈ R we
are interested in obtaining a confidence interval [L, U ] such that P (L ≤ ηηηtµµµ ≤
U |IZZZ

M (M)) = 1 − α. We can use (9) to construct confidence intervals based
on the method of pivotal quantities.

Result 2 Let ηηη ∈ Rn and T = ηηηtYYY . Define L and U such that

F (T ; L, σ2 ∥ηηη∥2
, IZZZ

M (M)) = 1 − α

2
, F (T ; U, σ2 ∥ηηη∥2

, IZZZ
M (M)) = α

2
,

then [L, U ] is a confidence interval for ηηηtµµµ conditional on Maic = M such that
P (ηηηtµµµ ∈ [L, U ] | Maic = M) = 1 − α.

Result 2 is a general result, because ηηη ∈ Rn can be defined by the user. For
instance, considering ηηηt = eeei(XXXt

MXXXM )−1XXXt
M as the direction of interest for

inference, Result 2 provides a confidence interval for the ith parameter in the
selected model.

If the true model is indeed linear, i.e. there exist a βββ0 such that µµµ = XXXβββ0,
and AIC selects a model M which does not contain all non-zero parameters,
then β̂ββ is an unbiased estimator not for the true parameters but for

βββM = βββ0[M ] + (XXXt
MXXXM )−1XXXt

MXXXMcβββ0[M c] (10)

where M c denotes the parameters not in the model M and βββ0[M ] represents
the true coefficients in the model M . Result 2 can be used to calculate the
confidence intervals for the components of βββM .

3 Simulation study

Consider
Yi = sin(2xi) + ϵi, i = 1, . . . , n,

where xi ∼ N(0, 4) and ϵi
i.i.d∼ N(0, 9) for i = 1, . . . , 50. In the models,

consider orthogonal polynomials of degree 8. We include the intercept and
the first order of the polynomial in all models and we fit all possible models
with the other 7 terms (27 models). Denote the orthogonal polynomials by
ggg(x) = (g1(x), . . . , g8(x)), we want to approximate sin(2x) by orthogonal poly-
nomials. We run the simulation until the model with M = (β0, β1, β3, β5) has
been selected 1000 times. Denote g1g1g1 = (1n, ggg), including a unit column for
the intercept. The confidence intervals are calculated for the components of
(g1Mg1Mg1M

tg1Mg1Mg1M )−1g1Mg1Mg1M
t sin(2xxx).
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Figure 1: Mean of confidence intervals and their coverage probabilities over
1000 replications for different methods.

Figure 1 shows the mean of the confidence intervals over 1000 simulation
runs for different methods along with their coverage probabilities for β3 and
β5. We denote the proposed method by AIC(σ) when we use the knowledge
about the σ and denote by AIC(σ̂) where we estimate the variance in the
full model. The results for [3] (Asymp-AIC) and [2] (Posi) are also presented.
Both AIC(σ) and AIC(σ̂) outperform other methods in terms of confidence
interval lengths. The naive method leads to confidence intervals with similar
length but the coverage probability is lower than the nominal value.

4 Conclusion

We proposed a new method for considering the selection randomness in in-
ference by AIC for linear regression. In contrast the Asymp-AIC proposed
by [3] which holds asymptotically, we do not need to simulate from the con-
strained multivariate normal distribution and the results are exact even in
small sample sizes. The method performs better than PostAIC when the lin-
ear model is not the correct model. For normal linear regression models this
method can be considered as a complement for PostAIC. Because if we assume
the selected model is correct, the PostAIC can generate accurate confidence
intervals; otherwise, the proposed method in this chapter can be used.
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