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Competing point forecasts for functionals such as the mean, a quantile, or a
certain risk measure are commonly compared in terms of loss functions. These
should be incentive compatible, i.e., the expected score should be minimized
by the correctly specified functional of interest. A functional is called elicitable
if it possesses such an incentive compatible loss function. With the squared
loss and the absolute loss, the mean and the median possess such incentive
compatible loss functions, which means they are elicitable. In contrast, variance
or Expected Shortfall are not elicitable. Besides investigating the elicitability of
a functional, it is important to determine the whole class of incentive compatible
loss functions as well as to give recommendations which loss function to use in
practice, taking into regard secondary quality criteria of loss functions such as
order-sensitivity, convexity, or homogeneity.
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1 Evaluating and comparing forecasts

“From the cradle to the grave, human life is full of decisions. Due to the inherent
nature of time, decisions have to be made today, but at the same time, they
are supposed to account for unknown and uncertain future events. However,
since these future events cannot be known today, the best thing to do is to
base the decisions on predictions for these unknown and uncertain events. The
call for and the usage of predictions for future events is literally ubiquitous and
even dates back to ancient times.” [2] Today, elaborated forecasts are present
in a variety of different disciplines: government, business, finance, the energy
market, agriculture, or everyday life.

Assume we have m ∈ N competing experts issuing their forecasts for time
t = 1, . . . , N . Then, one has prediction-observation-sequences(

x
(i)
t , yt

)
t=1,...,N i ∈ {1, . . . ,m}. (1)
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The values yt are ex post realizations of a time series (Yt)t∈N, taking values in
an observation domain O, whereas x(i)

t are ex ante forecasts taking values in
an action domain A. Assessing the quality of the forecasts, one can ask two
main questions: (i) How good is the forecast at hand in absolute terms? And
(ii) How good is the forecast at hand in relative terms? Question (i) deals with
forecast validation, whereas question (ii) is concerned with forecast selection,
forecast comparison, or forecast ranking. The concept of elicitability – and the
elicitation problem in particular – focuses on question (ii).

1.1 Consistent scoring functions and elicitability

To introduce the abstract decision-theoretic framework of forecast comparison,
there is no need to specify the observation domain O and the action domain
A. In particular, the observations can be real-valued, vector-valued, but
also functional-valued or even set-valued. Acknowledging the uncertainty of
future outcomes, the forecasts can be probabilistic in nature, taking the form
of probability distributions or densities. In this case, the action domain A
coincides with a class of probability distributions F where one assumes that F
contains the (conditional) distributions Ft of Yt. On the other hand, one is often
interested in certain statistical properties of the underlying distribution Ft ∈ F
of Yt such as the mean, the median, or a certain risk measure. Mathematically
speaking, such a property can be specified in terms of a functional T : F → A.
In this situation, one speaks about point forecasts, and typically, A coincides
with O (e.g. in case of the mean) where A = Rk, but might also be functional-
valued or set-valued. Interestingly, the concept of probabilistic forecasts can be
covered by the latter upon considering the identity map on F as the functional
T . For most of the forthcoming results, we focus on vector-valued point
forecasts, meaning A = Rk, and O = Rd.

Commonly, competing forecasts are assessed in terms of loss or scoring
functions S : A×O→ R, with the most popular choices S(x, y) = |x− y|, or
S(x, y) = (x− y)2 when A = O = R. Thus, if a forecaster reports the quantity
x ∈ A and y ∈ O materializes, she is penalized by S(x, y) ∈ R. Given the
competing prediction-observation-sequences at (1), the ranking is done in terms
of the realized scores S̄(i)

N = 1
N

∑N
t=1 S(x(i)

t , yt), i ∈ {1, . . . ,m}. That is, a fore-
caster is deemed to be the better the lower her realized score is. However, this
ranking depends on the choice of the scoring function S. To incentivize truthful
and hones forecasts, the Bayes act arg minx∈A EF [S(x, Y )] should coincide
with the correctly specified forecast T (F ), hence, the scoring function must
be chosen in line with the functional T . If T (F ) = arg minx∈A EF [S(x, Y )]
for all F ∈ F , S is called strictly F-consistent for T : F → A. Following the
terminology of [5, 8], a functional T : F → A is called elicitable if it possesses
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a strictly F-consistent scoring function S. Besides meaningful forecast com-
parison and ranking, the elicitability of a functional opens the possibility to
do M -estimation. That is, under certain regularity conditions on the sequence
(Yt)t∈N detailed e.g. in [6], T̂n = arg minx∈A

1
n

∑n
t=1 S(x, Yt) is a consistent

estimator for T , if S is strictly consistent for T . Similarly, elicitability leads the
way to generalized regression such as quantile regression or expectile regression;
see [7, 9].

2 The elicitation problem

Having settled the basic definitions, one can formulate a threefold elicitation
problem with respect to a fixed functional T : F → A.

(i) Is T elicitable?

(ii) What is the class of strictly F-consistent scoring functions for T?

(iii) What are good choices of strictly F-consistent scoring functions?

The rest of this abstract summarizes some important ideas, contributions, and
results concerning the elicitation problem.

2.1 Which functionals are elicitable?

One natural way to show the elicitability of a functional is by directly providing
a strictly consistent scoring function. In particular, one can show that under
certain regularity assumptions, the piecewise linear loss Sα(x, y) = (1{y ≤
x} − α)(x− y) is strictly consistent for the α-quantile, and that the piecewise
squared loss Sτ (x, y) = |1{y ≤ x} − τ |(x − y)2 is strictly consistent for the
τ -expectile (in particular, the mean and the median, as well as all moments,
are elicitable, subject to mild regularity assumptions). [11] has provided a
powerful necessary condition in terms of the level sets of the functional at
hand, which is often relatively easy to check in practice.

Proposition 1 (Convex level sets [11]). Let T : F → A be elicitable. Then,
for any F0, F1 ∈ F such that T (F0) = T (F1) = t and for any λ ∈ (0, 1) such
that Fλ = (1− λ)F0 + λF1 ∈ F it holds that T (Fλ) = t.

Remarkably, the proof works independently of the specific choice of A.
The result shows that variance and Expected Shortfall (ES) are generally not
elicitable [5]. If A = R and if the functional T fulfills some continuity conditions,
[12] showed the sufficiency of convex level sets for elicitability. Similar results
for sufficiency lack for the case A = Rk when k > 1.
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In case of vector-valued functionals, a functional T = (T1, . . . , Tk) consisting
of elicitable components is again elicitable. If Sm is strictly consistent for
Tm, then S(x1, . . . , xk, y) =

∑k
m=1 Sm(xm, y) is a strictly consistent scoring

function for T . This observation provokes the questions (a) whether strictly
consistent scoring functions must be necessarily of this form, and (b) whether
functionals consisting only of elicitable components are the only vector-valued
functionals. The revelation principle [11] gives a negative answer to question
(b). It asserts that any bijection of an elicitable functional is elicitable. Since
the pair (mean, variance) is a bijection of the first two moments, which are
elicitable, this shows the elicitability of the pair (mean, variance), even though
variance itself is not elicitable. This somehow unexpected result leads to the
natural question: Are bijections of functionals with elicitable components the
only elicitable functionals? It turns out that this is not the case: The two
risk measures Expected Shortfall (ES) and Value at Risk (VaR) are, as a
pair, jointly elicitable even though ES itself is not elicitable; see Theorem 1.
Moreover, there is generally no (known) bijection between (VaR, ES) and a
vector consisting only of elicitable components.

2.2 Determine the class of strictly consistent scoring functions

Interestingly, strictly consistent scoring functions for a functional T are not
unique. E.g., if S is strictly consistent for T , then (x, y) 7→ λS(x, y) + a(y) is
also strictly consistent for T for any λ > 0 and any ‘offset-function’ a : O→ R.
Moreover, the class of strictly consistent scoring functions is convex. However,
there is far more flexibility in the class. A powerful tool is the so-called
Osband’s principle [11, 3]. It connects the gradient of an expected score
with the expectation of an identification function. An identification function
for a functional T : F → A ⊆ Rk is a function V : A × O → Rk such that
EF [V (x, Y )] = 0 if and only if x = T (F ) for all F ∈ F . Examples are
V (x, y) = x− y for the mean and V (x, y) = 1{y ≤ x} − α for the α-quantile.
If a functional T : F → A ⊆ Rk is elicitable and possesses an identification
function, then, under some richness conditions on the class F , there exists a
matrix-valued function h : A→ Rk×k such that

∇x EF [S(x, Y )] = h(x) EF [V (x, Y )] ∀x ∈ A, ∀F ∈ F . (2)

One can also derive a second order Osband’s principle considering the Hessian
∇2
x EF [S(x, Y )] of the expected score. Under appropriate smoothness condi-

tions, the Hessian must be symmetric for all F ∈ F and positive semi-definite
at x = T (F ). This implies further necessary conditions on the matrix-function
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h often even leading to sufficient conditions for strict consistency.1 Exploiting
Osband’s principle, one can show that – under some regularity conditions –
S : R×R→ R is a strictly consistent scoring function for the mean if and only
if S is of Bregman type, that is,

S(x, y) = φ′(x)(x− y)− φ(x) + a(y), (3)

where φ : R→ R is strictly convex. Similarly, S is strictly consistent for the
α-quantile if and only if

S(x, y) =
(
1{y ≤ x1} − α

)
g(x1)− 1{y ≤ x1}g(y) + a(y), (4)

where g : R→ R is strictly increasing. Indeed, taking derivatives of the expected
score, (3) becomes ∂x EF [S(x, Y )] = φ′′(x)(x−EF [Y ]) such that φ′′ plays the
role of h in (2). For (4), one obtains ∂x EF [S(x, Y )] = g′(x)(F (x)− α), such
that g′ = h in (2).

Expected Shortfall is jointly elicitable with Value at Risk

VaR and ES are the most popular risk measures in practice. For a financial
position Y with distribution F and a level α ∈ (0, 1), they are defined as

VaRα(F ) := F−1(α) = inf{x ∈ R : F (x) ≥ α},

ESα(F ) := 1
α

∫ α

0
VaRβ(F ) dβ = EF [Y |Y ≤ VaRα(F )].

That means risky positions yield large negative values of VaRα or ESα. In-
tuitively, VaRα gives the worst loss out of the best (1 − α) × 100% of all
cases, whereas ESα gives the average loss given one exceeds VaRα. There is
an ongoing debate in academia and industry which risk measure to use. The
debate mainly concentrates on ESα and VaRα. The latter, as a quantile, is
elicitable under mild regularity conditions, it fails to be superadditive, thus
violating the coherence property of risk measures. Moreover, it fails to take
into account the size of losses beyond the level α. Conversely, ESα considers
the whole tail of the distribution beyond the level α, it fulfills the coherence
property, but fails to be elicitable. In this light, the following result is crucial
and opens the possibility to meaningful forecast comparison of joint (VaR,
ES)-forecasts which is of particular importance in the context of quantitative
risk management and especially the question of backtestability [4, 10].

1Using second order Osband’s principle, one can show for example, that any vector of
different quantiles and / or expectiles only possesses strictly consistent scoring functions
that are additively separable. On the other hand, vectors of expectations allow for a
more flexible structure similar to (3). This gives answers to the previous question (a).
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Theorem 1 ([3]). Let α ∈ (0, 1). Let F be a class of distribution functions
on R with finite first moments and unique α-quantiles.
(i) If φ : R→ R is strictly convex and if for any x2 ∈ R, the function

[x2,∞)→ R, x1 7→ g(x1) + φ′(x2)x1

α
(5)

is strictly increasing, then the scoring function S : A0 × R→ R, where A0 :=
{(x1, x2) ∈ R2 : x1 ≥ x2}, of the form

S(x1, x2, y) =
(
1{y ≤ x1} − α

)
g(x1)− 1{y ≤ x1}g(y) + a(y) (6)

+ φ′(x2)
(
x2 +

(
1{y ≤ x1} − α

)x1

α
− 1{y ≤ x1}

y

α

)
− φ(x2),

is strictly F-consistent for (VaRα,ESα).
(ii) Conversely, under some regularity conditions, all strictly consistent scoring
functions for (VaRα,ESα) are of the form given at (6).

Part (ii) of Theorem 1 asserting the necessity of the form at (6) can be shown
using Osband’s principle with the joint two-dimensional identification func-
tion V (x1, x2, y) =

(
1{y ≤ x1} − α, x2 +

(
1{y ≤ x1} − α

)
x1
α − 1{y ≤ x1} yα

)′.
Part (i) can be proved by anticipating that for fixed x1 the function (x2, y) 7→
S(x1, x2, y) is of Bregman-type with minimum at V2(x1, x2, y) = 0. On
the other hand, for fixed x2, due to the condition at (5), the function
(x1, y) 7→ S(x1, x2, y) is a strictly consistent scoring function for the α-quantile.

2.3 Secondary quality criteria besides strict consistency

Facing the multitude of strictly consistent scoring functions illustrated at
(3), (4), and (6), this burden of choice calls for new concepts such as the
notion of forecast dominance introduced in [1]. Alternatively, it motivates
the introduction of secondary quality criteria besides strict consistency giving
guidance which scoring function to use. This line of research is pursued
in [2]. Generalizations of the concept of order-sensitivity [8] to the higher
dimensional setting are introduced, ensuring meaningful forecast comparison
of possibly misspecified predictions in particular settings. Convexity of scoring
functions can show to be beneficial for optimization purposes, but also shed
new light on the paradigm of maximizing the sharpness of a forecast subject
to calibration as well as on incentives for cooperation between competing
forecasters. Finally, equivariance properties of functionals motivate the notion
of order-preserving scoring functions, nesting concepts such as homogeneity or
translation invariance of scoring functions.
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