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1 Mallows’ models

A full ranking of N items simply assigns a complete ordering to the items.
Any such ranking vector can be viewed as an element π of the permutation
group SN generated by the first N natural integers. Thus the notation

π =< π−1(1), π−1(2), . . . , π−1(N) >

is used for the permutation π which corresponds to listing the various items in
their ranked order. There are various nonparametric methods for modelling
rank data. Some models have larger probabilities for rankings that are “close”
to a “modal” ranking π0. An example of such probability model is given by

Pθ,π0(π) = eθd(π, π0)− ψ(θ) for π ∈ SN , (1)

where θ is a real parameter (θ ∈ R), d(·, ·) is a metric on SN , π0 is a fixed
ranking and ψ(θ) is a normalizing constant. When θ > 0, π0 is the modal
ranking, for θ < 0, π0 is an antimode, and for θ = 0, Pθ,π0 is the uniform
distribution. More general model, with d(·, ·) being a discrepancy function,
is suggested by Diaconis [4], but since all distances used in this paper are
metrics, d(·, ·) could be regarded as a metric. Deza and Huang [3] considered
some metrics on SN which are widely used in applied scientific and statistical
problems.
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F (π, σ) =
N∑
i=1
| π(i)− σ(i) | Spearman’s footrule

R (π, σ) =
(

N∑
i=1

(π(i)− σ(i))2

)1/2

Spearman’s rho

M (π, σ) = max
1≤i≤N

| π(i)− σ(i) | Chebyshev metric

K (π, σ) = # {(i, j) : 1 ≤ i, j ≤ N,
π(i) < π(j), σ(i) > σ(j)}

Kendall’s tau

C (π, σ) = N minus number of cycles in σπ−1 Cayley’s distance

U (π, σ) = N minus length of the longest
increasing subsequence in σπ−1

Ulam’s distance

H (π, σ) = # {i ∈ {1, 2, . . . , N} : π(i) 6= σ(i)} Hamming distance

L (π, σ) =
N∑
i=1

min (| π(i)− σ(i) |, N− | π(i)− σ(i) |) Lee distance

Easily can be shown that all of the presented metrics possess the following
important property.

Definition 1. The metric d on SN is called right-invariant, if and only if
d (π, σ) = d (π ◦ τ, σ ◦ τ) for all π, σ, τ ∈ SN .

Critchlow [1] pointed that the right-invariance of metric is necessary require-
ment since it means that the distance between rankings does not depend on
the labelling of the items. More properties for these metrics can be found in
Critchlow [1, 2], Diaconis [4] and Marden [7].

If d(·, ·) is right-invariant, then (1) can be defined by the random variable
D(π) = d(π, π0) = d(ππ−1

0 , eN ), where π ∼ Uniform(SN ) and eN is the
identity permutation (eN =< 1, 2, . . . , N >). Notice that the distribution of D
does not depend on π0 and it could be assumed that D(π) = d(π, eN ). Let’s
use the notation D[∗] for the random variable D induced by some distance [∗]
from the listed above. The special cases of (1) with D = DK and D = DR2

are first investigated by Mallows [6]. Models based on DC and DH can be
found in Fligner and Verducci [5].

Model (1) could be significantly simplified if the distribution of D is known
and can be written explicitly. Let m(t) be the moment generating function of
D. Then, as shown in [5],
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eψ(θ) =
∑
π∈SN

eθD(π) = N !
∑
di

P (D = di)eθdi = N !m(θ)

⇒ ψ(θ) = log(N !m(θ)) . (2)

For DF , DR, DM , DK , DC , DU and DH numerical characteristics, exact
distributions, asymptotic approximations and statistical applications can be
found in Diaconis [4] and Marden [7]. The goal of this paper is to study
the Mallows’ model based on DL and compare it to the models induced by
the other given metrics. The rest of the paper is organized as follows. In
Section 2 some properties of the distribution of Lee distance are derived under
uniformity assumption. Maximum likelihood estimations and testing procedure
for deviation from the Uniform distribution are proposed in Section 3. In
Section 4 a comparison between the models based on the eight distances is
made.

2 Lee distance

Let’s first notice that DL(π) = L(π, eN ) can be decomposed in N terms:

DL(π) =
N∑
i=1

min (| π(i)− i |, N− | π(i)− i |) =
N∑
i=1

cN (π(i), i) . (3)

There is an interpretation of cN (i, j) := min (| i− j |, N− | i− j |) in terms
of graph theory. Let G be a simple cycle graph with nodes {i}Ni=1 and edges
N−1⋃
i=1
{i, i + 1} and {N, 1}. Then cN (i, j) is the minimum distances over G

between the nodes i and j. Obviously, 0 ≤ cN (i, j) ≤ N/2 for even N and
0 ≤ cN (i, j) ≤ (N − 1)/2 for odd N , i.e.

0 ≤ cN (i, j) ≤
[
N

2

]
, for all i, j = 1, 2, . . . , N , (4)

where [x] is the greatest integer less than or equal to x. From (3) and (4) it
follows that

0 ≤ DL(π) ≤ N
[
N

2

]
, for all π ∈ SN . (5)

The lower limit in (5) is reached only for π = eN . When N is even the upper
limit is reached only for π equals to

e∗N :=< N

2 + 1, N2 + 2, . . . , N − 1, N, 1, 2, . . . , N2 − 1, N2 > ,
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and in the case of odd integers N the maximum value of DL is reached when
π is equal to e′N or e′′N , where

e′N :=< N + 1
2 ,

N + 1
2 + 1, . . . , N − 1, N, 1, . . . , N + 1

2 − 2, N + 1
2 − 1 >

e′′N :=< N + 1
2 + 1, N + 1

2 + 2, . . . , N − 1, N, 1, . . . , N + 1
2 − 1, N + 1

2 > .

Since

cN (π(i), eN (i)) + cN (π(i), e∗N (i)) = min (| π(i)− i |, N− | π(i)− i |) +

min
(
| π(i)− N

2 − i |, N− | π(i)− N

2 − i |
)

= N

2 , for i = 1, 2, . . . , N2 ,

and

cN (π(i), eN (i)) + cN (π(i), e∗N (i)) = min (| π(i)− i |, N− | π(i)− i |) +

min
(
| π(i)− i+ N

2 |, N− | π(i)− i+ N

2 |
)

= N

2 , for i = N

2 + 1, . . . , N ,

the relation

L(π, eN ) + L(π, e∗N ) =
N∑
i=1

cN (π(i), eN (i)) + cN (π(i), e∗N (i)) = N2

2 , (6)

is true for all π ∈ SN . The right-invariant property of L implies that L(π, eN )
and L(π, e∗N ) have the same distribution when π ∼ Uniform(SN ). From that
fact and (6) it follows that

P (DL = k) = P

(
DL = N2

2 − k
)

, for k = 0, 1, . . . , N
2

2 , i.e.

the distribution of DL is symmetric when N is even. Furthermore DL can
take only even values since

DL(π) ≡
N∑
i=1

min (| π(i)− i |, N− | π(i)− i |) (mod 2)

⇒ DL(π) ≡
N∑
i=1
| π(i)− i |≡ 0 (mod 2)

for even integers N .
The probability mass function of DL for N = 5, 6, 7, 8 is shown on the figure

below.
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3 Parameters estimation and tests for uniformity

Formula (2) can be used to find estimations for the unknown parameters in
(1). Suppose that there are n observed complete rankings π(1), π(2), . . . , π(n)

and the mode π0 in (1) is unknown. Then the loglikelihood function is given
by

l(θ, π0, n) = θS(π0)− nψ(θ),

where S(π0) =
n∑
i=1

d(π(i), π0). In order to find the maximum likelihood esti-

mations (MLE’s), first it is necessary to calculate

π̂min = argmin
π∈SN

S(π) and π̂max = argmax
π∈SN

S(π) .

For θ < 0, let θ̂min be the value for which l(θ, π̂min, n) is maximized. For θ > 0,
let the maximum of l(θ, π̂max, n) occurs for θ = θ̂max. Finally, the MLE’s

(
θ̂, π̂0

)
=


(
θ̂min, π̂min

)
, if l(θ̂min, π̂min, n) ≥ l(θ̂max, π̂max, n)(

θ̂max, π̂max

)
, otherwise .

If θ̂ = 0 then (1) is the uniform model and π̂0 is not unique since for all
π ∈ SN the loglikelihood, l(0, π, n), is the same. For Spearman’s rho R(·, ·)
and Kendall’s tau K(·, ·) it can be shown that θ̂min = −θ̂max. From (6) it
follows that θ̂min = −θ̂max is also valid for Lee distance L(·, ·), when N is even.
In these cases l(θ̂min, π̂min, n) = l(θ̂max, π̂max, n) and it is enough to find just
π̂min and θ̂min. The described MLE’s and other methods for estimating θ and
π0 can be found in [7].



PPP N. Nikolov and E. Stoimenova

For testing the null hypothesis H0 : θ = 0 (uniform model) against the
alternative HA : θ 6= 0, Marden [7] considered the likelihood ratio statistic
(LRS) given by

LRS = 2
[
lA(θ̂, π̂0, n)− l0(0, π, n)

]
= 2

[
θ̂S(π̂0)− nψ(θ̂) + n log(N !)

]
,

where l0 and lA are the loglikelihood functions under H0 and HA, respectively,
and

(
θ̂, π̂0

)
are the MLE’s. Let k(π) be the number of observations that are

equal to π ∈ SN . Then the empirical probability for π is k(π)
n

and a quantity,
which measures the total nonuniformity of the data, could be defined by

TNU = 2
∑
π∈SN

k(π)
[
log
(
k(π)
n

)
− log

(
1
N !

)]
.

Similarly to the multiple correlation coefficient in the linear regression,
Marden [7] considered the coefficient

R2 = LRS

TNU
,

which can be used to measure the percentage of nonuniformity in the data
that is explained by the fitted model. Thus R2 = 1 when the model exactly
fits the data, and R2 = 0 if it performs no better than the uniform model.

4 Comparison between the distance based models

In 1980, the American Psychological Association (APA) conducted an election
in which five candidates were running for president and voters were asked to
rank order all of the candidates. The complete rankings of 5738 voters are
given in [4, p. 96]. The average ranks received by candidates A, B, C, D and
E are 2.84, 3.16, 2.92, 3.09, and 2.99, respectively, and the total nonuniformity
of the data is TNU = 1717.51. The fitted Mallows’ models based on the eight
distances considered are given in Table 1.

Since the theoretical distribution of LRS is unknown, it is approximated
via simulations with 1000 trials for each distance, and the results for the mean
and the 95% critical values of LRS’s are presented in the last two columns.
Notice that for all models the hypothesis of uniform distribution is rejected
since LRS’s are much larger than the simulated critical values. In fact all
LRS’s are larger than the maximum simulated values. However, all models
explain less than a third of the nonuniformity, where the model based on DL
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Distance θ̂ π̂0 Ordering LRS R2 LRSsim
mean

LRSsim
95% c.v.

DF 0.0828 51324 BDCEA 282.26 0.1643 4.63 9.62
DR2 −0.0163 15243 ACEDB 150.78 0.0878 3.49 7.95
DM −0.2639 15243 ACEDB 379.54 0.2210 5.49 10.43
DK −0.0722 15243 ACEDB 124.28 0.0723 3.83 8.43
DC −0.2483 23154 CABED 304.21 0.1771 7.22 11.98
DU −0.2505 23154 CABED 181.52 0.1057 6.80 12.06
DH 0.2437 51324 BDCEA 290.16 0.1689 6.74 11.41
DL 0.1656 51324 BDCEA 524.39 0.3053 5.52 10.73

Table 1: Fitted Mallows’ models for APA data

has the highest R2 = 30.53%, and the lowest R2 = 7.23% is obtained when
using DK .

The estimated “modal” orderings (antimodes for θ̂ > 0) are given in the
forth column. The ordering of DR2 , DM and DK coincides with the “modal”
ordering based on the average ranks. As mentioned in [7], there are definite
camps within APA: candidates A and C are research psychologists, D and E
are clinical psychologists, and B is a community psychologist. These groups
can also be noticed from the orderings of DR2 , DM , DK , DC and DU . Since
the number of candidates N = 5 is odd, the maximum value of L(eN , π) is
reached for π = e′N and π = e′′N . Thus the interpretation of the antimode
ordering of DL is more complex.

Candidate B is ranked last in all “modal” rankings, except in models based
on DC and DU , where B separates the groups {A,C} and {D,E}. The rankings,
which are constructed without considering candidate B, could be used to study
the influence of B over the complete rankings models. The MLE’s of the
models’ parameters for the new rankings are given in Table 2.

Distance θ̂ π̂0 Ordering LRSnew R2
new LRSdiff

Simulated
LRSdiff cdf

DF −0.0698 2143 CAED 126.22 0.1268 156.05 0.591
DR2 −0.0177 1243 ACED 59.79 0.0601 90.99 0.769
DM −0.2239 2143 CAED 226.30 0.2273 153.23 0.001
DK −0.0663 1243 ACED 54.64 0.0549 69.64 0.742
DC −0.2532 2143 CAED 251.79 0.2529 52.42 0.000
DU −0.2319 2143 CAED 124.75 0.1253 56.77 0.006
DH −0.1832 2143 CAED 217.59 0.2186 72.58 0.000
DL −0.1311 2143 CAED 265.39 0.2666 259.00 0.007

Table 2: Fitted models without candidate B
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The total nonuniformity of the new data is TNUnew = 995.58. The “modal”
orderings of the remaining four candidates are not changed in the models based
on DR2 , DK , DC and DU , whereas there are new “modal” orderings in the
other models. For DC , DU and DH the coefficient R2

new increases, while for
DF , DR2 , DK and DL it decreases. R2

new is almost the same as R2 for the
model based on DM . The quantity LRSdiff = LRS − LRSnew can be used
to measure the influence of candidate B over the explanatory power of the
models. The value of LRSdiff is simulated 1000 times for all complete models
with parameters given in Table 1. The observed value of LRSdiff and the
simulated empirical cumulative distribution function (taken at the observed
value of LRSdiff ) are given in the last two columns. There is a significant
decrease in the explanatory power of the models based on DF , DR2 and DK ,
since the values of LRSdiff are significant for these models. Thus it can be
suggested that the models based on DM , DC , DU , DH and DL are more
“robust”. Similar conclusion is made in [7, p. 30] by analyzing sport related
rank data.
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