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Functional principal component analysis (FPCA) is the key technique for
dimensionality reduction and detection of main directions of variability present
in functional data. However, it is not the most suitable tool for the situation
when analysed dataset contains repeated or multiple observations, because
information about repeatability of measurements is not taken into account.
Multilevel functional principal component analysis (MFPCA) is the modified
version of FPCA developed for data observed at multiple visits. The original
MFPCA method was designed for balanced data only, where for each subject
the same number of measurements is available. In this article we propose the
modified MFPCA algorithm which can be applied for unbalanced functional
data. The modified algorithm is validated and tested on real–world sleep data.
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Introduction

Functional principal component analysis (FPCA) is an appropriate tool for
detecting main directions of variability and dimensionality reduction of func-
tional data [1]. On the other hand, FPCA considers each curve as a single
observation and therefore it is not appropriate for detecting sources of variabil-
ity in datasets with multiple observations. These multiple observations can be
represented by repeated collection of data at multiple visits.

To address this repeated observations data design, the multilevel functional
principal component analysis (MFPCA) method was developed [1]. MFPCA
decomposes observed functional data into three parts i) the overall mean,
common for all subjects, ii) the subject–specific deviation from the overall
mean, and iii) the remaining deviation from a subject–specific profile. Moreover,
the method is able to transform high dimensional functional data (possibly
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infinite) into finite dimensional vector spaces of principal components at two
levels.

The original MFPCA method was proposed and validated only for data with
the same number of observations per subject. In this article we demonstrate
that in its original form the method is not able to properly detect subject–
specific profiles when the number of observations among subjects is different.
Therefore we propose the modification of the original MFPCA method which
can better deal with the unbalanced data situation.
The article is organised in the following way. The general description of

MFPCA is given in the first section. The modified MFPCA method for
unbalanced data is proposed in Section 2. In Section 3 the method is validated
on real–world sleep data. Finally, Section 4 provides discussion and a few
concluding remarks.

1 Multilevel functional principal component
analysis

MFPCA deals with functional data with repeated observations in order to
detect sources of variability at two levels; the between– and within–subject
variability [1].

Let consider I subjects with J observations Xij , i = 1, . . . , I; j = 1, . . . , J .
For simplicity we assume that observed functional data are defined at the same
time grid within a closed interval T and are sufficiently smooth. Moreover the
observations or visits within each subject should have natural ordering. In [1],
the authors used a two–way functional ANOVA model in order to decompose
Xij into a fixed and random part

Xij(t) = µ(t) + ηj(t) + Zi(t) +Wij(t), t ∈ T. (1)

The overall mean µ and the visit–specific deviation from the overall mean

ηj , j = 1, . . . , J are fixed effects. For identifiability we assume
J∑

j=1
ηj(t) =

0, t ∈ T. The subject–specific deviation from the visit–specific mean Zi and
the remaining deviation from the subject– and visit–specific profiles Wij

are uncorrelated stochastic processes with mean 0 and covariance functions
S1 : T × T → R and S2 : T × T → R.
According to the Karhunen-Loewe expansion the stochastic processes Zi

and Wij can be decomposed in the following way

Zi(t) =
∞∑

k=1
αikφ

(1)
k (t) Wij(t) =

∞∑
l=1

βijlφ
(2)
l (t)



MFPCA for Unbalanced Data PPP

where αik and βijl are random variables with mean 0 and

E(αikαil) =
{

0, if k 6= l,

λ
(1)
k , if k = l,

E(βijkβijl) =
{

0, if k 6= l,

λ
(2)
k , if k = l.

Moreover, {αik, k = 1, 2, . . . } are uncorrelated with {βijl, l = 1, 2, . . . }. We
call them the level 1 and level 2 principal component scores. Two sets of
orthonormal functional bases of the L2 space

{φ(1)
k , k = 1, 2, . . . } and {φ(2)

l , l = 1, 2, . . . }

which represents the functional principal components (FPCs) at level 1 and
level 2 are not necessarily mutually orthogonal.
In [1], the following three covariance functions are considered in order to

estimate functional principal components at both levels

KT (s, t) = Cov (Xij(s), Xij(t)) = S1(s, t) + S2(s, t),
KB(s, t) = Cov (Xij(s), Xik(t)) = S1(s, t),

KW (s, t) = KT (s, t)−KB(s, t) = 1
2Cov (Xij(s)−Xik(s), Xij(t)−Xik(t)) = S2(s, t).

In other words, FPCs at level 1 are eigenfunctions of KB and FPCs at level 2
are eigenfunctions of KW .

Using the method of moments, the following estimators of unknown quantities
are proposed in [1]

µ̂(t) = 1
IJ

I∑
i=1

J∑
j=1

Xij(t), η̂j(t) = 1
I

I∑
i=1

Xij(t)− 1
IJ

I∑
i=1

J∑
j=1

Xij(t), t ∈ T

K̂T (s, t) = 1
IJ

I∑
i=1

J∑
j=1

(Xij(s)− µ̂(s)− η̂j(s)) (Xij(t)− µ̂(t)− η̂j(t)) , (2)

K̂B(s, t) = 1
IJ(J − 1)

I∑
i=1

J∑
j 6=l

(Xij(s)− µ̂(s)− η̂j(s)) (Xil(t)− µ̂(t)− η̂l(t)) ,

(3)

K̂W (s, t) = K̂T (s, t)− K̂B(s, t), (4)

where µ̂ and η̂j are estimated similarly as in the standard ANOVA model [1].
The way of selecting the number of functional principal components at each

level separately, as well as the procedure for computing principal component
scores at both levels are described in details in [1].
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2 MFPCA for unbalanced data design

The original MFPCA algorithm was designed for balanced data with ordered
visits. However, the authors state that this assumption is not restrictive and
the method is able to deal with unbalanced data as well.
Let consider I subjects with Ji, i = 1, . . . , I observations. In this case,

the number of observations may differ among subjects and we assume that
the order of observations within each subject is exchangeable. Therefore the
visit–specific deviations ηj from the overall mean are set to zero. The model
(1) changes into one–way functional ANOVA

Xij(t) = µ(t) + Zi(t) +Wij(t), t ∈ T, j = 1, . . . , Ji, i = 1, . . . I. (5)

By computing the expected values of the covariance functions estimators (2),
(3) and (4) for data with unbalanced design and η̂j ≡ 0 we obtain

E
(
K̂T (s, t)

)
=
(

1− A2

A2
1

)
S1(s, t) +

(
1− 1

A1

)
S2(s, t), (6)

E
(
K̂B(s, t)

)
=
(

1− 2
A1

A3 −A2

A2 −A1
+ A2

A2
1

)
S1(s, t)− 1

A1
S2(s, t),

E
(
K̂W (s, t)

)
=
(

2
A1

A3 −A2

A2 −A1
− 2A2

A2
1

)
S1(s, t) + S2(s, t),

where Ak =
∑I

i=1 J
k
i , k = 1, 2, 3. It means, that for I → ∞ and a bounded

number of observations for each subject 1 ≤ Ji ≤M,M ∈ N, the matrices K̂B

and K̂W are only asymptotically unbiased estimators of S1 and S2.
Therefore, when data are unbalanced, we propose the following modification

of the covariance functions estimators. First, let define

K̂W

UU
(s, t) = 1∑I

i=1 Ji

I∑
i=1

Ji∑
j:Ji>1

(
Xij(s)− µ̂(s)

)(
Xij(t)− ν̂i

(−j)(t)
)
,

ν̂i
(−j)(t) = 1

Ji − 1

Ji∑
l 6=j

Xil(t), t ∈ T.

While E
(
K̂W

UU
(s, t)

)
= S2(s, t) which holds also for unbalanced data, we

can estimate FPCs at level 2 directly from K̂W

UU
. The estimator (2) for KT

remains the same with expected value (6). Therefore FPCs at level 1 can be
estimated as eigenfunctions of the following function

K̂B

UU
= A2

1
A2

1 −A2

(
K̂T −

A1 − 1
A1

K̂W

UU
)
, E

(
K̂B

UU
(s, t)

)
= S1(s, t).
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3 Application to sleep data

Sleep is a continuous process which can be described by a finite number of sleep
stages. Probabilistic sleep model (PSM) characterises sleep with probability
values of 20 sleep microstates [3]. Considering the probability values as a
function of time we obtain a curve.
In the first step we took 292 probabilistic sleep curves of the PSM applied

to sleep recordings from the SIESTA database [2]. These curves represent
the sleep microstate similar to REM (or rapid eye movement sleep stage).
Using the two–step clustering approach [4], the curves were divided into 12
clusters depicted in Figure 1. Objective of this study is to identify cluster
representatives, which can be used for the further analysis of the sleep process.
With this aim in mind, we applied model (5) to the clustered curves. Effectively
this means that we have 12 clusters (or ‘subjects’) with a different number of
observations, in this case the number of curves in each cluster. The number of
curves varied from 4 (cluster 9) to 117 (cluster 12).
Using the original and modified MFPCA algorithms the cluster–specific

profiles Pi(t) = µ̂(t) + Ẑi(t), t ∈ T were computed for each cluster. The
superior performance of the modified MFPCA algorithm is visible especially
for clusters 2, 5 or 9 consisting of a smaller number of curves. Taking into
account that the original sleep probabilistic curves are strictly positive, the
cluster–specific profiles estimated by the original MFPCA method reached for
short time subintervals unexpected negative values.

4 Conclusion

In this article we described modified version of the multilevel functional prin-
cipal component analysis method [1]. MFPCA is an appropriate tool for
detection of main direction of variability for functional data with repeated
observations. Original MFPCA was developed only for balanced data where
each subject has the same number of observations and the observations have
natural order.

However, we found and demonstrated on real sleep data, that in its original
form the algorithm applied to unbalanced data leads to inferior results because
the estimators of covariance functions described in [1] are biased.This is
especially true for datasets with a small sample size.
In this article we proposed the modified estimators of covariance functions

for unbalanced data. These leads to the unbiased estimation of functional
principal components at level 1 and 2. We proved good performance of the
proposed modified version of MFPCA on the analysed sleep data.
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Figure 1: Cluster analysis of the sleep microstate similar to the REM sleep
stage with 292 sleep probabilistic curves (light green) divided into
12 clusters. Cluster–specific profiles estimated by the modified MF-
PCA algorithm (red) form better cluster representatives than their
counterparts estimated by the original MFPCA algorithm (blue).
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