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We study E-optimal block designs for comparing a set of test treatments with a
control treatment. We provide the complete class of all E-optimal approximate
block designs and we show that these designs are characterized by simple linear
constraints. Employing the provided characterization, we obtain a class of
E-optimal exact block designs with unequal block sizes for comparing test
treatments with a control.
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1 Introduction

Consider a blocking experiment for comparing a set of test treatments with
a control. As noted in [4], the experimental objective of comparing the test
treatments with a control arises, for instance, in screening experiments or in
experiments in which it is desired to assess the relative performance of new
test treatments with respect to the standard treatment. Such objective is also
quite natural for medical studies involving placebo (e.g., see [12], [11]).

Formally, we have

Yj = µ+ τi(j) + θk(j) + εj , j = 1, . . . , n,

where µ is the overall mean, τi is the effect of the i-th treatment (0 ≤ i ≤ v),
θk is the effect of the k-th block (1 ≤ k ≤ d), and the random errors ε1, . . . , εn

are uncorrelated, with zero mean and variance σ2 <∞. Treatment 0 denotes
the control, and the test treatments are numbered 1, . . . , v. By τ , we denote
the vector of treatment effects and by θ the vector of block effects. The
assumed objective of the experiment is to estimate the comparisons of the
test treatments with the control τi − τ0 (1 ≤ i ≤ v) or comparisons with the
control in short. Let Q := (−1v, Iv)T , where 1v is the column vector of ones of
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length v and Iv is the identity matrix. Then, the experimental objective can
be expressed as the estimation of QT τ .

There is a large amount of literature on optimal exact designs for test
treatment-control comparisons, mostly considering the A- and MV -optimality
criteria; for a survey, see [4] or [5]. The E-optimality criterion also received
some attention; see [6], [8], [7].

In this paper, we provide the class of all E-optimal approximate block
designs for comparisons with the control. Based on the obtained class of
optimal approximate designs, we provide a class of E-optimal exact designs,
which extends the known results on E-optimality to the case of unequal block
sizes.

1.1 Experimental design

An exact design ξe determines in each block the numbers of trials that are
performed with the various treatments. Thus, ξe can be expressed as a function
ξe : {0, . . . , v} × {1, . . . , d} → {0, 1, 2, . . . , n} such that

∑
i,k ξe(i, k) = n. The

value ξe(i, k) determines the number of trials performed with treatment i in
block k. Suppose that the blocks 1, . . . , d have pre-specified non-zero sizes
m1, . . . ,md. We denote the class of all block designs for v + 1 treatments and
d blocks of sizes m = (m1, . . . ,md)T by D(v, d,m).

An approximate design (or simply a design) is a function ξ : {0, . . . , v} ×
{1, . . . , d} → [0, 1], such that

∑
i,k ξ(i, k) = 1. The value ξ(i, k) represents the

proportion of all trials that are performed with treatment i in block k. For a
given design ξ, let us denote the design matrix X(ξ) := (ξ(i, k))i,k, let r(ξ) :=
X(ξ)1d be the vector of total treatment proportions and let s(ξ) := XT (ξ)1v

be the vector of relative block sizes. Because we consider non-zero block sizes,
we always have s(ξ) > 0.

The information matrix of a design ξ for estimating all pairwise compar-
isons of treatments is M(ξ) := diag(r(ξ)) − X(ξ)diag−1(s(ξ))XT (ξ), where
diag−1(s(ξ)) := diag(s−1

1 (ξ), . . . , s−1
d (ξ)). The parameter system QT τ is said

to be estimable under an approximate design ξ if C(Q) ⊆ C(M(ξ)), where C
denotes the column space. In such a case, we say that ξ is feasible and we
have rank(M(ξ)) = v. The information matrix N(ξ) := (QTM−(ξ)Q)−1 of a
feasible design ξ for estimating QT τ is obtained by deleting the first row and
column of M(ξ) (see [1], [3]). Let us partition X(ξ) as XT (ξ) = (z(ξ), ZT (ξ)),
where z(ξ) is a d× 1 vector; i.e., Z(ξ) = (ξ(i, k))i>0,k. Then, the information
matrix for comparing the test treatments with the control is

N(ξ) = diag(r1(ξ), . . . , rv(ξ))− Z(ξ)diag−1(s(ξ))ZT (ξ). (1)

Note that N(ξ) is proportional to the inverse of the covariance matrix of the
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least squares estimator of τ1− τ0, . . . , τv − τ0. A design is said to be Ψ-optimal
if it minimizes Ψ(N(ξ)) for some function Ψ.

We say that a design ξ that satisfies ξ(i, k) = risk is a product design of r
and s. We denote such design as ξ = r ⊗ s.

2 E-optimality

We denote the largest (smallest) eigenvalue of a symmetric matrix A by λmax(A)
(λmin(A)). A design is E-optimal if it minimizes λmax(N−1(ξ)) or, equivalently,
if it maximizes λmin(N(ξ)). Such a design minimizes the maximum variance for
the linear combinations

∑
i>0 xiτi − (

∑
i>0 xi)τ0 over all normalized x ∈ Rv.

In the following theorem, we provide the complete characterization of E-
optimal block designs for comparing the test treatments with the control: an
approximate design ξ∗ is E-optimal for the comparisons with the control if
and only if

(i) in each block, ξ∗ assigns one half of the trials to the control and

(ii) ξ∗ is equireplicated in the test treatments.
Theorem 1. An approximate block design ξ is E-optimal for the comparisons
with the control if and only if it satisfies

ξ(0, k) = sk(ξ)
2 and r1(ξ) = . . . = rv(ξ) = 1

2v . (2)

Proof. Let ξ be E-optimal. From Theorems 1 and 6 of [10] it follows that an
E-optimal design must satisfy r0(ξ) = 1/2 and ri(ξ) = 1/(2v) for i > 0, and
that the optimal value of λmin(N(ξ)) is λ∗min = 1/(4v). Moreover,

λmin(N(ξ)) = min
xT x=1

xTN(ξ)x ≤ 1
v

1T
v N(ξ)1v

= 1
v

(∑
i>0

ri(ξ)−
d∑

k=1

1
sk(ξ) (

∑
i>0

ξ(i, k))2

)

= 1
2v −

1
v

d∑
k=1

(qk)2

sk(ξ) ,

where qk :=
∑

i>0 ξ(i, k) (1 ≤ k ≤ d). Because
∑

k ξ(0, k) = 1/2, we have∑
k qk = 1/2. Therefore, for fixed s(ξ), the following holds (which can be seen

by finding the minimum of the function on the left-hand side):
d∑

k=1

q2
k

sk(ξ) ≥
d∑

k=1

(sk(ξ)/2)2

sk(ξ) = 1
4 ,
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i\k 1 2 3 4
0 1/6 1/6 1/12 1/12
1 1/6 1/12 0 0
2 0 1/12 1/12 1/12

Table 1: E-optimal approximate block design ξ for comparing two test
treatments with the control in 4 blocks of relative sizes s =
(1/3, 1/3, 1/6, 1/6)T . The value on position (i, k) represents ξ(i, k).

using the fact that
∑

k sk(ξ) = 1. The inequality is attained as equality if and
only if qk = sk(ξ)/2 for all k = 1, . . . , d. Hence,

λmin(N(ξ)) ≤ 1
2v −

1
4v = 1

4v = λ∗min. (3)

Since ξ is E-optimal, the inequality is attained as equality, and thus ξ(1, k) =
sk(ξ)/2 for all k = 1, . . . , d.

For the converse part, let ξ satisfy (2). Then, ξ is connected (see [2])
and therefore feasible. Moreover, ZT (ξ)1v = s(ξ)/2 and Z(ξ)1d = (2v)−11v.
Therefore,

N(ξ)1v = 1
2v 1v −

1
2Z(ξ)diag−1(s(ξ))s(ξ) = 1

2v 1v −
1
2Z(ξ)1d.

Thus, N(ξ)1v = [1/(2v) − 1/(4v)]1v = (4v)−11v. That is, λ∗ = 1/(4v) is an
eigenvalue of N(ξ) corresponding to the eigenvector 1v. Therefore, it suffices
to prove that λ∗ is the smallest eigenvalue of N(ξ).

Let N(ξ) = (nij)i,j . We note that nij ≤ 0 for i 6= j. Using an argument
similar to that in Theorem 3.1 of [6], let x be an eigenvector of N(ξ). Let
us denote the eigenvalue that corresponds to x as λ. By multiplying x by an
appropriate constant, we obtain maxj |xj | = 1. Thus, xj ≤ 1 for all 1 ≤ j ≤ v.
Let i be the index that satisfies |xi| = 1. Then, by multiplying x by ±1, we
obtain xi = 1. Now, we can write

(N(ξ)x)i = niixi +
∑
j 6=i

nijxj ≥ nii +
∑
j 6=i

nij = (N(ξ)1v)i,

where the inequality follows from nij ≤ 0 for j 6= i, and xj ≤ 1 for 1 ≤ j ≤ v.
Because (N(ξ)x)i = λxi = λ and (N(ξ)1v)i = λ∗, we have λ∗ ≤ λ for any
eigenvalue λ.

Table 1 gives an E-optimal block design provided by Theorem 1. Theorem 1
is a generalization of Theorems 1 and 2 of [11], where E-optimal block designs
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i\k 1 2 3
0 1 1 2
1 1 0 1
2 0 1 1

Table 2: Exact block design ξe for given block sizes m = (2, 2, 4)T , which is
E-optimal for comparing two test treatments with the control. The
value on position (i, k) represents ξe(i, k).

for comparisons with the placebo (control) for specific experimental settings
are provided.

3 Exact Designs

For a strictly convex criterion, the only optimal approximate block designs are
product designs with optimal treatment proportions (see [10]). For example,
for given relative block sizes s, the product design ξ∗ = r∗ ⊗ s, where

r∗0 =
√
v − 1
v − 1 , r∗1 = . . . = r∗v =

√
v − 1√
v(v − 1)

,

is the single A-optimal, as well as the single MV -optimal design, see [3], [10].
It is rather difficult to obtain optimal or efficient exact designs from such
designs, e.g., by rounding methods (see Chapter 12 of [9]).

However, since E-optimality lacks strict convexity, the class of E-optimal
designs is richer, and efficient exact designs can be obtained by the rounding
methods more easily. Moreover, this allows for a simple construction of optimal
exact designs for a wide range of experimental settings. We easily obtain the
following theorem that provides a class of E-optimal exact designs for unequal
block sizes.
Theorem 2. If there exists an exact design ξ∗e ∈ D(v, d,m) that satisfies
ξ∗e (0, k) = mk/2, 1 ≤ k ≤ d, and ξ∗e is equireplicated in the test treatments,
then ξ∗e is E-optimal for test treatment-control comparisons in D(v, d,m).
Proof. The approximate version ξ∗e/n of ξ∗e is in fact an E-optimal approximate
design, because it satisfies the conditions of Theorem 1. Then, ξe is clearly an
E-optimal exact design, because the class of approximate designs is a relaxation
of the class of the “normalized” exact designs ξe/n.

Theorem 2 generalizes Theorem 3.1 of [6], which provides E-optimal block
designs for blocks of equal size, to blocks of unequal sizes. An E-optimal design
given by Theorem 2 is provided in Table 2.
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