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In contrast to the low dimensional case, variable selection under the assumption
of sparsity in high dimensional models is strongly influenced by the effects of
false positives. The effects of false positives are tempered by combining the
variable selection with a shrinkage estimator, such as in the lasso, where the
selection is realized by minimizing the sum of squared residuals regularized
by an ¢; norm of the selected variables. Optimal variable selection is then
equivalent to finding the best balance between closeness of fit and regularity, i.e.,
to optimization of the regularization parameter with respect to an information
criterion such as Mallows’s Cp or AIC. For use in this optimization procedure,
the lasso regularization is found to be too tolerant towards false positives,
leading to a considerable overestimation of the model size. Using an £y
regularization instead requires careful consideration of the false positives, as
they have a major impact on the optimal regularization parameter. As the
framework of the classical linear model has been analysed in previous work,
the current paper concentrates on structured models and, more specifically, on
grouped variables. Although the imposed structure in the selected models can
be understood to somehow reduce the effect of false positives, we observe a
qualitatively similar behavior as in the unstructured linear model.
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1 Introduction

Recent literature has had considerable attention for the uncertainties that
follow from the process of model or variable selection. On one hand, it has
been realized that the selection of variables should look forward, focussing on
the application in which the selected model will be used, so as not to waste
degrees of freedom on variables that are of little importance in the application
[2]. On the other hand, post-model selection inference is looking backwards,
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investigating the effects of the model selection uncertainty on the inference in
the selected model [7, 6].

The contribution of this paper is, however, situated on the effect of the
uncertainty on the variable selection process itself. The numerous insignificant
components in sparse, high dimensional models lead to false positives being
a main source of uncertainty. Well established methods for high dimensional
variable selection are explicitly based on controlling the false discovery rate [1]
or even the absolute number of false positives [4]. The methods in this class
tend to be minimax oriented, rather than data driven. Another way to deal
with false positives is to reduce the impact of a false positive by using shrinkage
selection. This is realized, for instance, in the lasso, where the variable selection
objective is formulated as a trade off between the sum of the residual squares
and the /1 norm of the selected variables. The ¢; norm, i.e., the sum of the
absolute values of the selected variables, should be seen as an alternative for
the ¢y norm, measuring the size of the selected set. Finding the minimum
sum of squared residuals, regularized by the number of selected variables, is a
combinatorial problem, and therefore intractable from the computational point
of view. The ¢, alternative leads to a quadratic programming problem whose
solution is still a proper variable selection, as it contains many exact zeros.
The nonzeros, however, are not found by least squares projection, but rather
by shrunk versions of the least squares estimators. The intuition behind this
is that dubious parameters can be included into the model, but with a value
close to zero. If such a parameter happens to be a false positive, its inclusion
into the model has a limited impact on any inference in that model. With
a much faster algorithm than its ¢, counterpart, the ¢; regularized variable
selection, equiped with an appropriate choice of the regularization parameter,
is able to find a model with a similar degree of sparsity [3].

Existing variable selection consistency results do not consider the case where
the regularization parameter has to be optimized in a data dependent way,
using an information criterion. While for fixed or minimax values of the
parameter, /1 regularization provides a valid alternative for ¢y, the equivalence
holds no longer through the optimization process. This is explained by the ¢;
tolerance towards false positives: since the ¢ procedure reduces the impact of
a false positive, the optimal balance between the sum of the residual squares
and the regularization shifts towards larger models.

In searching for the optimal regularization, ¢; can still be used to actually
come up with a selection, but for the evaluation of the quality of the selection,
it makes a difference whether the estimation within the selection keeps the
shrinkage of the ¢, regularization. If the shrinkage estimator is replaced by a
least squares projection, then the optimal balance should shift back towards
smaller models. It is obvious that the estimation of the ¢y balance requires
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a different expression of the information criterion. The compensation for the
difference between ¢y and ¢, regularization has been described as a “mirror”
effect [5], further explained in Section 2. It has been explored in the context
of unstructured selection in a linear model. In this paper, we extend the scope
to structured selection, presented in Section 3. The actual contribution of the
paper then follows in Section 4.

2 Mirror effect in unstructured selection in linear models

Consider the sparse linear model
Y =Kg3+e¢,

where the design matrix K has size n x m with n smaller than m, and
the number of nonzeros in B is unknown but smaller than n. Also, let
As € {1,2,...,m} be a selection with s nonzeros, obtained by a procedure,
S(Y,s), that selects among all possible subsets of size s. As an example,
S(Y, s) could be an implementation of the lasso, finetuned to have s nonzeros
as result. Furthermore, let K4, denote the n x s submatrix consisting of the
s columns in K corresponding to the selection. We investigate the quality of
the least squares projection 8, = (KESKAS)’lKiY, assuming that K4 _
is non-singular. As a measure for quality, we adopt the prediction error, but
a similar discussion would hold for any distance between selected and true
model. The prediction error is defined as PE(84_), where

~ 1 ~
PE(B4) = B (KB~ KaBll13). (1)

Let A2 be the selection provided by an oracle observing K3 without noise, using
the same procedure, i.e., A2 = S(KB,s). Then the least squares projection,
B a0 = (KﬂoKAg)_lK:";oY, depends on the observations through Y, but not
through A°. The prediction error PE(3 40) is estimated unbiasedly by A,(A2),
where Ay (A) is a non studentized version of Mallows’s Cp criterion,

A 1 ~ 2|A
8B = L1y - KB+ 2o o2 @

The selection A, = S(Y,s), however, depends on Y. The expectation of
(2) will not be equal to PE(B4_ ). As the second and third term of (2) are
constants, this is explained by the behavior of |[Y — Ky B4 3. In the case

where the procedure consists of minimizing (2) on all selections of size s, i.e.,
S(Y,s) =arg min4|—s A, (A), the deviation of the information criterion from
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the error curve can be described as a reflection with respect to the oracular
mirror PE(B 4.) = EAp(B 40) (5], meaning that

PE(BAS) - PE(B\A;?) ~ PE(BAg) - EAp(ﬁAAS) (3)

An intuitive explanation follows by assuming that s is large enough to catch
all really important variables into both A, and A?. Once the important
variables are in the model, the remainder of the s variables are chosen to
further minimize the distance between K4, 8,4 and Y. Among the remaining
candidates, these variables perform best in fitting the signal K3 with the errors,
and thus perform worst in staying close to signal without the errors. The
contrast between the better-than-average appearance EA,(8,4 ) and worse-
than-average true prediction error follows from the fact that the optimisation
over random variables A, (8 ) affects the statistics of the selected values. The
oracle curve PE(B 40 ) acts as mirror, because the selection A2 does not depend
on Y, thus leaving the statistics of the selected values unchanged.

3 Structured selection with grouped variables

The lasso, in addition to providing us with a selection A, considering an
appropriate regularisation parameter, can be extented or used to take into
account structured models such as grouped variables [9], graphical models
[10, 8] or even hierarchical information [11]. When the variables are under the
hypothesis to have a natural group structure, the coefficients within a group
should all be nonzero (or zero).

In its Lagrangian form, the lasso problem of a linear model is expressed as

1
min S IY = KBI3 + A8l (4)

with A being a regularisation parameter which can be adjusted to obtain the
desired degree of sparsity. When K is orthogonal, the solution of (4) is simply
a soft-thresholded version of the least-squares estimate whose threshold is
A. For the remainder of this paper, we consider the signal-plus-noise model
Y = 8 + & where m = n and K = I,,. Then the best s term unstructured
selection, mesured by the Cp-value, consists of the s largest elements from Y.

For group selection, the penalty in (4) can be modified to become the sum
of the /5 norms of each group. This is known as group lasso and it aims
to optimise the following expression, for the signal-plus-noise model with n,
groups,

1 S
min S 1Y = BII5 + 211812 (5)

j=1
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where B; € R"/ forms a group of w; coefficients from 8 and Z;li LW = n.

The solution of (5) is again a soft-thresholded version of Y, although the
threshold has the form A|Y;|/||'Y ;|2 for observation ¢ within group j. Hence
without shrinkage, the best s, group selection contains the values of Y from
the s, groups of observations whose ¢ norms are the largest.

4 Mirror effect in group selection and discussion

In our simulation, 250 groups containing 20 coefficients 8, are generated so
that B = (8;);=1,....250 is a n-dimensional vector with n = 5000. Within group
J, the B; have the same probability p; of being set to 0; for each j, a different
value p; is randomly drawn from the set P = (0.95,0.80,0.50,0.05,0.00)
with respective probability Q = (0.02,0.02,0.01,0.20,0.75). The expected
proportion of nonzeros is then (P,Q) = 1/20 for the whole data 8. The
nonzeros B are then distributed according to the zero inflated Laplace model
f81820(B) = (a/2) exp(—a|B|) where a = 1/5. The observations are Y = 8 +¢,
where € is a n-vector of independent, standard normal errors. Estimates B are
calculated considering four configurations: groups of size 20 (initial setting), 5
and 2 (subgroups built from the original groups) and 1 (unstructured selection).

e Prediction Error and Mallows's Cp
12 :g"g%‘éé"gg:sé“g? The PE and Cp curves,
""" Mirtor Effect solid and dashed lines re-
spectively, are represented
as functions of the selec-
tion size, for different sizes
of group. The dotted line
depicts the mirror curve
estimated for unstrutured

variables [5].
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Figure 1: Mirror effect and group size impact.

Figure 1 plots the prediction error and Mallows’s Cp as a function of the
selection size for unstructured and 20-5-2-grouped variable selection. In each
case, we observe that the PE and Cp curves are reflexion of each other with
respect to a mirror curve. It is interesting to note that, for the signal-plus-noise
model, the unstructured and group mirror curves coincide once the PE and
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Cp curves are drifting apart. Also, it seems the bigger the group size gets, the
closer the corresponding PE and Cp curves are. Hence when the group size
grows, the mirror effect becomes smaller.
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