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In the modern era of high and infinite dimensional data, classical statistical
methodology is often rendered inefficient and ineffective when confronted
with such big data problems as arise in genomics, medical imaging, speech
analysis, and many other areas of research. Many problems manifest when
the practitioner is required to take into account the covariance structure
of the data during his or her analysis, which takes on the form of either a
high dimensional low rank matrix or a finite dimensional representation of
an infinite dimensional operator acting on some underlying function space.
Thus, we propose using tools from the concentration of measure literature
to construct rigorous descriptive and inferential statistical methodology for
covariance matrices and operators. A variety of concentration inequalities are
considered, which allow for the construction of nonasymptotic dimension-free
confidence sets for the unknown matrices and operators. Given such confidence
sets a wide range of estimation and inferential procedures can be and are
subsequently developed.
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1 Overview

Concentration inequalities are a general category of results from geometry,
functional analysis, and probability theory that control the tail behaviour
of probability measures. In recent years, they have proved invaluable to
statisticians due to their non-asymptotic dimension-free properties, which
makes them particularly suitable for estimation and inference on finite samples
of data living high or infinite dimensional space. Overviews of such results can
be found in the monographs [3, 8, 11]. This manuscript introduces some of the
author’s doctoral research into using concentration inequalities for statistical
estimation and inference on covariance matrices and operators.
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1.1 Definitions and notation

Definition 1 (Empirical Covariance Matrix). Let X1, . . . , Xn ∈ Rd be iid
realizations of some random variable X ∈ Rd with unknown covariance matrix
Σ ∈ Rd×d. Then, the sample or empirical estimate for Σ is

Σ̂ = 1
n

n∑
i=1

(Xi − X̄)(Xi − X̄)T

where X̄ = n−1∑n
i=1Xi is the sample mean of the data.

Definition 2 (Empirical Covariance Operator). For I ⊆ R, let f1, . . . , fn ∈
L2(I) be iid realizations of some random function f ∈ L2(I) with unknown
covariance operator Σ ∈ Op(L2). Then, the sample or empirical estimate for
Σ is

Σ̂ = 1
n

n∑
i=1

(fi − f̄)⊗ (fi − f̄) = 1
n

n∑
i=1

(fi − f̄)⊗2 = 1
n

n∑
i=1

〈
(fi − f̄), ·

〉
(fi − f̄)

where f̄ = n−1∑n
i=1 fi is the sample mean of the data.

Definition 3 (p-Schatten norm for matrices). For an arbitrary matrix Σ ∈
Rk×l and p ∈ (1,∞), the p-Schatten norm is

‖Σ‖pp = tr
(

(ΣTΣ)p/2
)

= ‖ν‖p`p =
min{k,l}∑
i=1

νpi

where ν = (ν1, . . . , νmin{k,l}) is the vector of singular values of Σ and where
‖·‖`p is the standard `p norm in Rd. In the covariance matrix case where
Σ ∈ Rd×d is symmetric and positive definite, ‖Σ‖pp = tr (Σp) = ‖λ‖p`p where λ
is the vector of eigenvalues of Σ.

When p =∞, we have the standard operator norm on Euclidean space

‖Σ‖∞ = sup
v∈Rd,‖v‖`2 =1

‖Σv‖`2 = sup
v∈Rd,‖v‖`2 =1

vTΣv.

For covariance matrices, this coincides with the maximal eigenvalue of Σ.

Definition 4 (p-Schatten norm for operators). Given two separable Hilbert
spaces H1 and H2, a bounded linear operator Σ : H1 → H2, and some
p ∈ [1,∞), then the p-Schatten norm is ‖Σ‖pp = tr

(
(Σ∗Σ)p/2

)
. For p =∞, the

Schatten norm is the operator norm: ‖Σ‖∞ = supf∈H1(‖Σf‖H2
/‖f‖H1

). In the
case that Σ is compact, self-adjoint, and trace-class, then given the associated
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eigenvalues {λi}∞i=1, the p-Schatten norm coincides with the standard `p norm
of the eigenvalues:

‖Σ‖pp =
{
‖λ‖p`p =

∑∞
i=1|λi|

p
, p ∈ [1,∞)

maxi∈N|λi|, p =∞

2 Covariance matrices

Given X1, . . . , Xn ∈ Rd, past studies have shown that the empirical estimate
for the covariance matrix, Definition 1, is a very poor estimator when the
underlying true Σ is high dimensional, d� n, and sparse meaning that most
of the off-diagonal entries are zero or negligible. Hence, much research has
gone into better estimation techniques [1, 2, 5, 15, 14]. In [10], we propose
using concentration inequalities to construct a non-asymptotic confidence set
for the empirical estimate and then search the confidence set in order to find
an improved estimator.

Let d(·, ·) be some metric measuring the distance between two covariance
matrices, and let ψ : R→ R be monotonically increasing. Then, the general
form of the concentration inequalities is

P
(
d(Σ0, Σ̂emp) ≥ Ed(Σ0, Σ̂emp) + r

)
≤ e−ψ(r),

which is a bound on the tail of the distribution of d(Σ0, Σ̂emp) as it deviates
above its mean. Thus, to construct a (1 − α)-confidence set, the variable
r = rα is chosen such that exp(−ψ(rα)) = α. Then, choose a Σ̂sp such that
d(Σ̂sp, Σ̂emp) ≤ rα.

The proposed search procedure is to sequentially set to zero the small-
est entries in Σ̂emp while remaining inside the rα-ball. The metric used is
d(Σ0, Σ̂emp) = ‖Σ0 − Σ̂emp‖1/2p where ‖·‖p is the p-Schatten norm from Defini-
tion 3. This metric is shown to be Lipschitz n−1/2 with respect to Euclidean
distance in Rd×n.

In [10], three types of distributional assumptions are considered: log concave
measures; sub-exponential measures; bounded random variables. In summary,
applying our methodology to log concave measures, which include the multi-
variate Gaussian distribution, yielded excellent theoretical and experimental
results. Our method is particularly good at support recovery or ”sparsistency”
in this case. For sub-exponential measures, the concentration inequalities
do not yield nice theoretical results, but the methodology still gives good
performance in simulation studies. This approach fails in the bounded random
variable case as the resulting confidence sets are not dimension-free.



PPP AB Kashlak

3 Covariance operators

In the functional data setting, f1, . . . , fn ∈ L2(I) are iid random functions
with I ⊆ R. Similarly to the high dimensional case, covariance operators are
of critical importance to inference and hypothesis testing. For example, the
development of k-sample tests for the equality of covariance is a major area of
research [4, 7, 12, 13].

In [9], we propose our own k-sample test for the equality of covariance
by first using Talagrand’s concentration inequality [16] in the Banach space
setting to construct confidence sets for each of the covariance operator. For
some desired p-Schatten norm, Definition 4, ‖·‖p, with p ∈ [1,∞) and with
conjugate q = p/(p− 1), we require the following terms, which correspond to
the distance between the empirical covariance estimate and the true covariance
operator and a weak variance term for this random variable:

Z =

∥∥∥∥∥ 1
n

n∑
i=1

fi ⊗ fi − E (fi ⊗ fi)

∥∥∥∥∥
p

=
∥∥∥Σ̂− Σ

∥∥∥
p

σ2 = 1
n

n∑
i=1

sup
‖Π‖q≤1

E
〈
f⊗2
i − Ef⊗2

i ,Π
〉2
.

In the above equation, the supremum is to be taken over a countably dense
subset of the unit ball of Π ∈ Op(L2). For some U ≥ ‖f⊗2

i ‖
2
L2 and vn =

2UEZ + nσ2, the initial level (1− α) confidence set constructed is

Cn,1−α =
{

Σ : Z ≤ EZ +
√
−2vn log(2α)/n− U log(2α)/(3n)

}
.

To make this confidence set usable on real data, the Rademacher average
Rn = n−1∑n

i=1 εi((fi − f̄)⊗2 − Σ̂), where P (εi = 1) = P (εi = −1) = 0.5 will
be used as a proxy for the unknown EZ.

In [9], this is not only applied to k-sample tests for equality of covariance, but
also to the classification and clustering of functional data. This methodology
is applied to a set of phoneme data detailed in [6], which is a collection of 400
log-periodograms for each of five different phonemes: /A/ as in the vowel of
“dark”; /O/ as in the first vowel of “water”; /d/ as in the plosive of “dark”; /i/
as in the vowel of “she”; /S/ as in the fricative of “she”. Each curve contains
the first 150 frequencies from a 32 ms sound clip sampled at a rate of 16-kHz.
Comparisons of our concentration-based methodology with other methods of
classification and clustering can be found in Tables 1 and 2, respectively.
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/A/ /O/ /d/ /i/ /S/
CoM 76.9 76.8 96.6 98.5 99.4
KNN 72.4 79.1 98.5 97.4 100.
Kernel 72.0 80.5 98.4 97.2 99.9
GLM 79.0 72.3 98.2 95.9 99.2
Tree 70.8 69.4 95.6 87.8 92.6

Table 1: Percentage of correct classification of the five phonemes against
the five methods: our concentration of measure approach (CoM);
k-nearest-neighbours (KNN); kernel method (Kernel); generalized
linear model (GLM); and regression trees (Tree).

Concentration k-means
Cluster A B C D E A B C D E
/A/ 281 119 0 0 0 281 119 0 0 0
/O/ 125 273 1 1 0 126 272 1 1 0
/d/ 0 0 384 15 1 0 2 386 10 2
/i/ 1 0 1 393 5 1 3 2 381 13
/S/ 0 0 0 3 397 0 0 0 2 398

Table 2: Clustering 2000 phoneme curves into 5 clusters. Similar results
achieved by both the concentration and k-means methods.
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