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This contribution is focused on the kernel conditional density estimations
(KCDE). The estimation depends on the smoothing parameters which in-
fluence the final density estimation significantly. This is the reason why a
requirement of any data-driven method is needed for bandwidth estimation.
In this contribution, the cross-validation method, the iterative method and
the maximum likelihood approach are conducted for bandwidth selection of
the estimator. An application on a real data set is included and the proposed
methods are compared.
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Introduction

Kernel smoothing techniques belong to the most popular non-parametric
techniques for data interpolation, especially for its simple usage and no strictly
limiting requirements. Conditional density estimations offer the comprehensive
information about the data structure – regression models only the conditional
expectation while conditional density includes even the variability and the
whole data distribution.
The estimator depends on the unknown parameters, called the smoothing
parameters or bandwidths. They influence the quality of the estimation
significantly, this is the reason why so much attention is given to the bandwidth
determination. The optimal values of the smoothing parameters depend on
the unknown conditional and marginal density, thus there is a necessity to
develop an automatic data-driven bandwidth selectors. In this contribution,
the widely used cross-validation method is supplemented with the iterative
method and the leave-one-out maximum likelihood method.
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1 Statistical properties of the Nadaraya-Watson
estimator of conditional density

The basic building block of kernel smoothing is a kernel function, which plays
a role of weighting function. Let K be a real valued function satisfying

1. K ∈ Lip[−1, 1], i. e. |K(x)−K(y)| ≤ L|x− y|, ∀x, y ∈ [−1, 1], L > 0,

2. supp(K) = [−1, 1],

3. moment conditions:∫ 1

−1
K(x) dx = 1,

∫ 1

−1
xK(x) dx = 0,

∫ 1

−1
x2K(x) dx = β2(K) 6= 0.

Such a function K is called a kernel of order 2.
Conditional density models the probability of a random variable Y given a
fixed observation X = x. The Nadaraya-Watson estimator of conditional
density takes the form

f̂NW (y|x) = 1
hy

n∑
i=1

wNW
i (x)K

(
y − Yi

hy

)
, (1)

where wNW
i (x) =

K
(

x−Xi
hx

)
n∑

j=1

K
( x−Xj

hx

) is a weight function in the point x, hx, hy > 0

are the smoothing parameters.
The statistical properties of the estimator are the rudiments for appraisal

of suitability of the estimator and determination of the optimal values of
bandwidths.
The Asymptotic Bias (AB) and the Asymptotic Variance (AV) of the Nadaraya-
Watson estimator are given by Hyndman et al. ([4]) with the expressions

AB
{
f̂NW (y|x)

}
= 1

2h
2
xβ2(K)

[
2g
′(x)
g(x) + ∂2f(y|x)

∂x2

]
+ 1

2h
2
yβ2(K)∂

2f(y|x)
∂y2 ,

AV
{
f̂NW (y|x)

}
= R2(K)f(y|x)

nhxhyg(x) ,

where R(K) =
∫
K2(t) dt, g(x) is a marginal density of a random variable X.

The global quality of the estimate is measured by the Mean Integrated Squared
Error (MISE) in the form

MISE
{
f̂NW (·|·)

}
=
∫∫

E
{(

f̂NW (y|x)− f(y|x)
)2
}
g(x) dx dy.
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The main term of MISE
{
f̂NW (·|·)

}
, the Asymptotic Mean Integrated Squared

Error (AMISE), is of the form

AMISE
{
f̂NW (·|·)

}
= c1

nhxhy
+ c2h

4
x + c3h

4
y + c4h

2
xh

2
y,

where

c1 =
∫
R2(K) dx,

c2 =
∫∫

β2
2(K)

4

(
2g
′(x)
g(x)

∂f(y|x)
∂x

+ ∂2f(y|x)
∂x2

)2
g(x) dy dx,

c3 =
∫∫

β2
2(K)

4

(
∂2f(y|x)
∂y2

)2
g(x) dy dx,

c4 =
∫∫

β2
2(K)

2

(
2g
′(x)
g(x)

∂f(y|x)
∂x

+ ∂2f(y|x)
∂x2

)(
∂2f(y|x)
∂y2

)
g(x) dy dx.

The optimal bandwidths
(
h∗x, h

∗
y

)
minimize AMISE

(h∗x, h∗y) = arg min
(hx,hy)

AMISE
{
f̂NW (·|·)

}
,

where the nonequations an−1/6 ≤ hx ≤ bn−1/6 and cn−1/6 ≤ hy ≤ dn−1/6 are
held for 0 < a < b <∞ and 0 < c < d <∞. The optimal values of smoothing
parameters are derived by differentiating of AMISE, setting the derivatives to
0 and making several algebraic simplifications. They are given by Hyndman et
al. in the paper [4] as follows

h∗x = n−1/6c
1/6
1

[
4
(
c5

3
c4

)1/4
+ 2c5

(
c3

c4

)3/4]−1/6
,

h∗y = h∗x

(
c3

c4

)1/4
= n−1/6c

1/6
1

[
4
(
c5

4
c3

)1/4
+ 2c5

(
c4

c3

)3/4]−1/6
.

2 Methods for bandwidth detection

The optimal values of the smoothing parameters depend on the unknown
conditional and marginal density. This is the reason why any data-driven
method for the estimation of them is needed.
One of the most common methods for choosing the bandwidths is the cross-
validation method introduced by Fan and Yim [2] and Hansen [3]. The idea
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of the method consists in minimization of the proper estimate of the Integrate
Squared Error (ISE) represented by the cross-validation function

CV (hx, hy) = 1
n

n∑
i=1

∫
f̂−i,NW (y|Xi)2 dy − 2

n

n∑
i=1

f̂−i,NW (Yi|Xi) ,

where f̂−i,NW (y|x) is the estimate in the pair of points (Xi, Yi) using the
points {(Xj , Yj) , j 6= i}. Thus, the estimates of bandwidths are given by

(ĥCV
x , ĥCV

y ) = arg min
(hx,hy)

CV (hx, hy).

The next proposed method is the iterative method suggested by Konečná
and Horová ([5]). The method is based on a suitable estimation of AMISE
which can be expressed by a sum of the Asymptotic Integrated Variance
(AIV) and the Asymptotic Integrated Squared Bias (AISB). The relation (2)
is derived by differentiating of AMISE, setting the derivatives to 0, and by
replacing the terms by their estimations:

AIV
{
f̂(·|·)

}
− 2ÎSB

{
f̂(·|·)

}
= 0. (2)

The term ÎSB
{
f̂(·|·)

}
is an approximation of the AISB

{
f̂(·|·)

}
term and it

is of the form

ÎSB
{
f̂(·|·)

}
=
∫∫ (

b̂ias
{
f̂(y|x)

})2
g(x) dx dy

=
∫∫ 

∑
i

Khx

√
2 (x−Xi)Khy

√
2 (y − Yi)∑

i

Khx

√
2 (x−Xi)

− f̂NW (y|x)

2

g(x) dxdy.

The supplemented equation ĥy = ĉĥx to the equation (2) is represented by
a relation ĉ between the values of the smoothing parameters, ĉ is given by
the reference rule suggested by Bashtannyk and Hyndman in the paper [1].
The estimations of the smoothing parameters are derived as a solution of the
system of two nonlinear equations (2) and the equation ĥy = ĉĥx.

The last suggested method is the leave-one-out maximum likelihood
method which proceeds with the maximum likelihood method, a statistical
standard procedure for estimating the unknown parameters. We consider
a random vector (X,Y) with the independent and identically distributed
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observations (Xi, Yi), i = 1, . . . , n of the unknown conditional density. We
define the modified likelihood function

L (hx, hy | X,Y) =
n∏

j=1
f̂−j,NW (Yj | Xj) .

The modification of the classical likelihood approach consists in leaving one
observation out. The estimations of the smoothing parameters are given by
maximization of L (hx, hy | X,Y), i.e.

(ĥLx , ĥLy ) = arg min
(hx,hy)

L (hx, hy | X,Y) .

3 Application on a real data

For comparison of the proposed methods, the airquality data from the
datasets package in R ([6]) are concerned. The data describe daily air
quality in New York, May to September 1973. The estimation of mean ozone
concentration in parts per billion, given the maximum daily temperature in
degrees Fahrenheit is focused on. There is 153 observations in total, in fact,
we include only 116 observation because of some missing values.
The cross-validation method (CV), the iterative method (IT) and the leave-
one-out maximum likelihood (ML) are used for bandwidth detection. The
values of estimated bandwidths and the computational times are given in the
Table 1.

Table 1: Estimates of the smoothing parameters and computational times for
methods used for bandwidth determination.

method ĥx ĥy computational time [s]
CV 1.845 7.638 182
IT 6.289 15.276 67.6
ML 2.517 10.017 31.3

As it can be seen, the CV method gives the most undersmoothed estimation
due to small values of the smoothing parameters, whereas the IT method
gives the most oversmoothed estimation. It seems that the ML gives the best
results, supported by the shortest computational time. The IT method is the
fastest – it takes about 30 seconds, the computational difficulty of the other
two methods is evident. The IT method takes less than one third while the
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ML method takes even one sixth of the CV’s computational time.
It is important to emphasize that these results are valid for this real-data
application. Several simulation studies should be executed for the proper
assessment of the proposed methods, although this exceeds the extent of this
contribution.

4 Conclusion

In this contribution, the methods for bandwidth determination were focused on.
The classical approach for bandwidth detection, the cross-validation method,
was supplemented with two suggested methods – the iterative and the leave-
one-out maximum likelihood method.
These approaches could be extended to the other types of kernel conditional
density estimations which have not been mentioned in this contribution. Future
work could also involve variable bandwidths, on the other hand, their theoretical
aspect as well as computational implementation would be quite difficult.
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