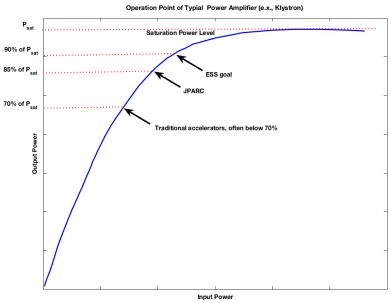


An Optimal Procedure for RF Conditionning at the FREIA Laboratory

3 Oct. 2016 Han Li, Uppsala University Rihua Zheng, ESS lund


UPPSALA UNIVERSITET

Background and Motivation

This slide discusses and proposes to test an optimal procedure for power coupler conditioning

- In the purpose of addressing challenges at ESS (high efficiency, high availability)
- 2) Reduce the time and effort of overall power coupler conditioning in cavity production at FREIA.

So far, there has no stander conditioning procedure being found.

Many different methods are adopted:

- traveling wave processing,
- standing wave (cavity detuned) processing ,
- frequency sweeping,
- power sweeping,
- bias voltage processing,
- warm and 'cold' processing,
- with vacuum interlock at different vacuum levels.

Due to the over-coupling, conditioning for dressed cavity/ cryomodule will only use standing wave, but follows the same procedure.

UPPSALA UNIVERSITET Typical Coupler Conditioning Procedure(I)

DESY is in charge of the development of 1110kW peak-power power coupler for 1.3 GHz TESLA cavity, which is chosen for the XFEL.

- In total of 800 input couplers are tested.
- This conditioning procedure a successful work and was applied similarly to others coupler.

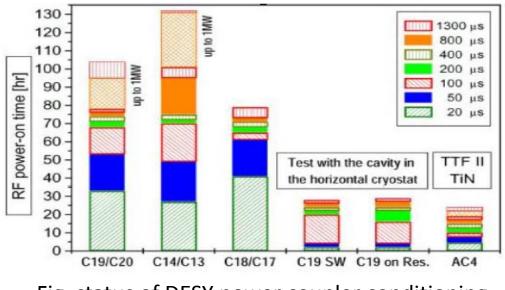
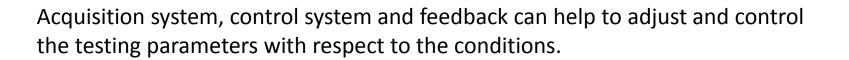
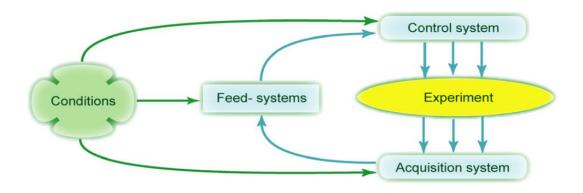


Fig. status of DESY power coupler conditioning


DESY conditioning experience:


• Conditioning should start with pulsed (low amplitude and duty factor) RF followed by cycling the RF power, or keeping the power constant for at least 24 hours, under the control of a fast vacuum feedback loop and/or of a computer program (allow for out gassing of less than 2 10-7 mbar).

- RF conditioning computer controlled,
- Starting with small pulse duration,
- Interlocks on electron activity, vacuum and arcing,
- Electronic module to control RF amplitude as function of vacuum outburst

- Condition: defined by experts

 (interlock trig threshold and auto conditioning threshold)
- Acquisition system: RF power, vacuum levels and all the interlocked signals.
- Control system : software controlling (duty and peak power of pulse, switching on and off the RF power, and resetting system) 10/3/2016

RF-Vacuum Feedback system

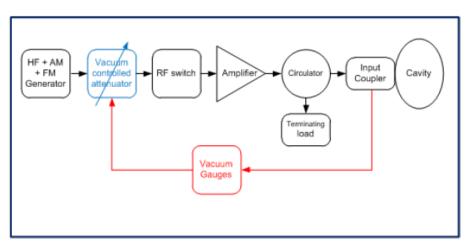
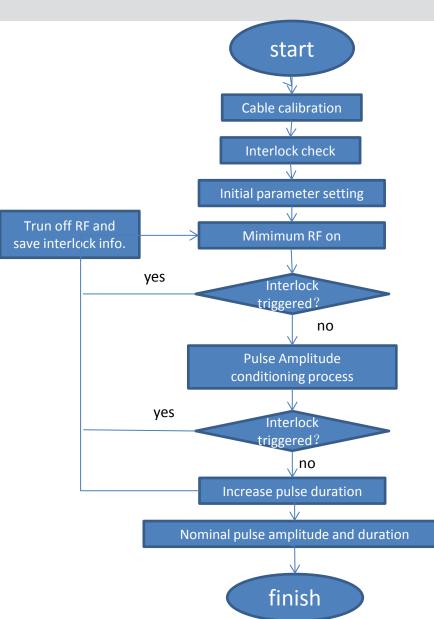


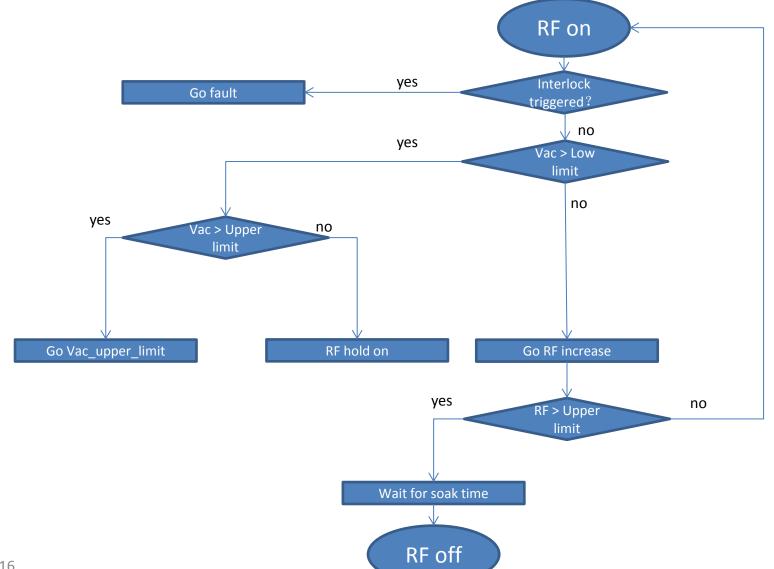
Fig. Layout of a simple RF-Vacuum Feedback system


Following principles need to fulfil for an effective feedback system:

•Regulate RF power as a function of vacuum pressure around the coupler as fast as possible.

•Apply a longer repetition period than the vacuum reading delay.

Conditioning procedure logic


Conditioning Procedure Logic

UPPSALA UNIVERSITET

Pulse Amplitude Conditioning Logic

10/3/2016

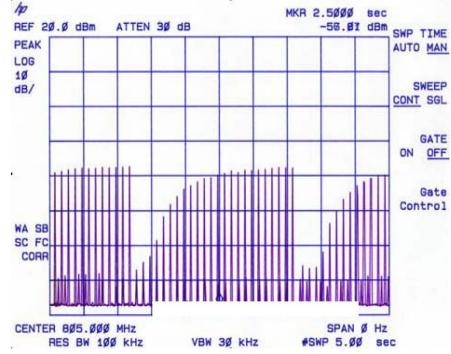
UPPSALA UNIVERSITET

Analog RF-Vacuum feedback in JLAB^V

- A fast interlock system based on this analog vacuum feedback.
- Key parameters:

Vacuum Interlock :

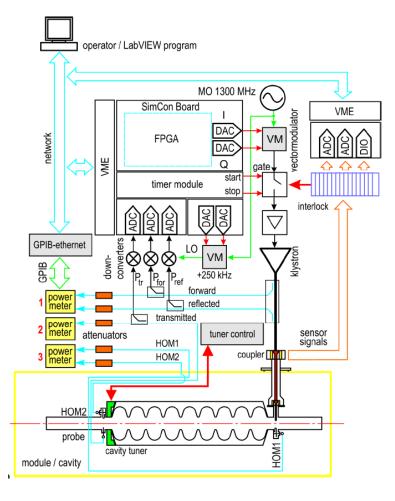
5e-7 mbar,


Software Vacuum Upper Limit :

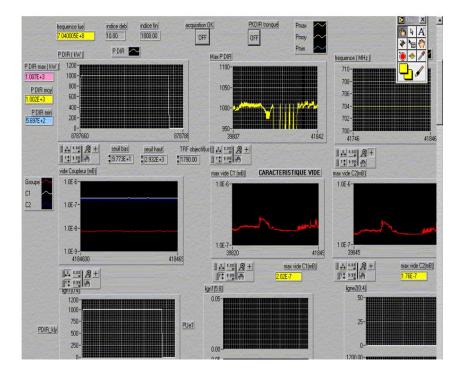
3e-7 mbar

Software Vacuum Low Limit :

2.5e-7 mbar


All the data acquisition and controls are accomplished by using a LabView-based program

RF-Vacuum feedback in DESY


This automatic RF conditioning module follows the same principle of conditioning stander and integrates a FPGA module, which can provides a faster and more reliable data processing.

Key parameters: Vacuum Interlock : 5e-7 mbar, Software Vacuum Upper Limit : 1e-7 mbar Software Vacuum Low Limit : 1e-8 mbar

RF-Vacuum feedback in CEA

The RF power level is increased every N pulses/ certain time according to a user defined step, only if no incident has occurred, otherwise it is reduced automatically.

Key parameters: Vacuum Interlock : 3e-7 mbar, Software Vacuum Limit : 2,7e-7 mbar

Hardware list

The main devices for the RF conditioning process are: Programmable Logic Controller (PLC)

- Signal Generator
- Power Meter
- Vacuum Gauge Controller (VGC)
- Cold Cathode Gauges (CCG)
- Arc Detector
- Electron Detector
- Fast RF Interlock Switch
- Voltage Controlled Attenuator
- Vacuum Pumping Cart

RF conditioning control at FREIA

Base on signal generator.

UNITARY Note: Interview Interview Calibration Addo Parcers Addo Cycle Interview Interview Interview Calibration Addo Parcers Addo Cycle Interview	/iew Project Operate Tools Window 逐 _ [1] 24pt Application Font 국 및				• Search
		FREIA RF Con	ditioning System	time:	
Caterate Off Also Proceed law Statument state Strument state Caterate Off Proceedure state Decrement date Proceedure state Decrement date Decrement date Septement date Decrement date Septement date Decrement date <			1	Instrument State Initial State Power State Checking state	
strument state				1E-8	15.8
Procedure state biolistic state biolis		r RF Power IOC Signal Ge	nerstor Interlock system	1E-8 1E-8 5E-8 1E-7	-60 -40 -20 0 10
Include state Increase state Vaccum Upper Limit state End state Fault Detection state Fault Detection state End state Remp After Fault Detection Remp After Fault Detection Vaccum Gauge Current Viscum (mbor) Image: Spatial Generator for 0					
Initialize attale Hold state End state Hold state	Procedure state	Increase state			
Vaccum Gauge Current Vacum (mbar) 10 10 10 10 10 10 10 10 10 10		Hold state 🔵 Fa	ult Detection state	RF Pulse Width List	0 0 0 0 0
er Condition Row Row Poressed Cavity Poressed Cavity	Current	- Cun	ent Worst Vaccum 0	10	Vacuum vs. T
Power Meter (dBm) Forward Power 0 Refected Power 0 Transmitted Power	flow		RF Switch	a O D D D D D D D D D D D D D D D D D D	
Power Meter (dBm) Signal Generator	nperature			et -40 -	elle elle elle elle elle elle elle ell
Transmitted Power 0 0 0 Imme Imme Save Plot	Forward P	ower 0		-60 - 1	18:00 01:10:00 01:12:00 01:14:00 01:16:00 01:18:00 01:19:41 -01-01 1904-01-01 1904-01-01 1904-01-01 1904-01-01 1904-01-01 1904-01-0
		ower 0		Waveform Pause	and the second se

RF conditioning control at FREIA

• Next step

Conditioning stytem base on Lund control system.

Reference

[1]M. Stirbet. RF Conditioning: Systems and Procedures.

[2] M. Stirbet. *Retrospective on fundamental power couplers for the spallation neutron source at OAK ridge*. LINAC2010, Tsukuba.

[3] B. Dwersteg, *TESLA RF power coupler development at DESY*, proceeding of the 10th workshop on RF superconducting, Tsukuba.

[4] D.Kostin, *Status and operating experience of the TTF coupler*.LINAC2004,Lubeck.

[5] W.D.Moeller, *Development and testing of RF double window input couplers for TESLA*, proceeding of the 12th workshop on RF superconducting, New York.

[6] C.Travier, *Design and test of a 1.3 GHz travelling wave window*, proceeding of the 9th workshop on RF superconducting, Santa Fe.

[7] Eric Montesions, *Optimal RF condictioning of advanced photon source (APS) fundamental power coupler*. CERN-ATS_Note-2013-031TECH.

[8] D.Kostin, Update on module measurments for the XFEL prototype modules, SRF2011, Chicago.

[9] D.Regidor, Tests of 704 MHz 1MW power coupler as Saclay. SRF 2009, Berlin.

[10] D.Regidor, *Cryogenic tests of a 704 MHz 1MW power coupler*. IPAC 10, Kyoto.