

Weather Station Physics project with a reseach basis 5c

Frida Bäfverfeldt Supervisor: Volker Ziemann

Introduction

• Why does FREIA need a weather station?

- Weather effects measurements (pressure vessels etc)

- Why am I the one building this device?
 - Physics project with a research basis 5c
- What will I talk about today?

- Hardware and software. Sensors -> Device -> Control system

LM35 – Temperature (Analog signal)

DHT22 – Relative Humidity & Temperature (Proprietor Digital protocol)

BMP280 – Pressure & Temperature (I2C Standard)

Processor and Communication

Communication within the device - I2C, analog, etc

Arduino!

Communication to/from device - Serial (RS-232)

USB cable HC-06 bluetooth module

Circuit diagram

The finished weather station

Software - Arduino

Arduino language: based on C/C++

An executable program only needs two functions to run. setup() and loop().

	<u>P</u>
sketch_dec14b	
<pre>int incomingByte = 0;</pre>	*
String s;	
char S[10];	E
int len;	
#include "DHT.h"	
#define DHTPIN 2	
#define DHTTYPE DHT22	
DHT dht(DHTPIN, DHTTYPE);	
int val;	
<pre>int tempPin = A2;</pre>	
<pre>#include <wire.h> #include <spl b=""></spl></wire.h></pre>	
#include (Adefruit Sensor b)	
#include <adafruit b="" bmp280=""></adafruit>	
#define BMP_SCK 13	
#define BMP_MIS0 12	-
A A A A A A A A A A A A A A A A A A A	
	-
Kompilering färdig.	
Global variables use 588 bytes (28%) of dynamic memory, leaving	r ^
1 460 bytes for local variables. Maximum is 2 048 bytes.	-

```
if (Serial.available() > 0) {
       Serial.readStringUntil('\n');
  s =
 char charBuf [50];
 s.toCharArray(charBuf, 50);
}
   if (strstr(charBuf, "TP?")) {
     Serial.print("TP ");
     Serial.println((float)bme.readTemperature());
   } else if (strstr(charBuf, "P?")) {
     Serial.print("P ");
     Serial.println((float)bme.readPressure());
   }
```


Communication

Command	Respons	Description
T?	Тх	Temperature in °C , meassured by LM35 sensor
TH?	TH x	Temperature in °C , meassured by DHT22 sensor
TP?	TP x	Temperature in °C , meassured by BMP280 sensor
H?	Нх	Relative humidity in %, measured by DHT22 sensor
P?	Рх	Pressure in Pa, measurd by BMP280 sensor

Where x is the numerical value returned by the sensor.

EPICS

```
get_pressure {
  out "P?";
  in "P %f";
  ExtraInput=Ignore;
}
```

```
record(ai, "$(DEVNAM):Pressure") {
  field(DESC,"Pressure in mbar")
  field(SCAN,"10 second")
  field(DTYP,"stream")
  field(INP,"@weather2.proto get_pressure $(PORT)")
}
```


Results MATLAB

Results EPICS

THANK YOU FOR YOUR ATTENTION Questions?

Full report available at: http://www.diva-portal.org/smash/get/diva2:974843/FULLTEXT01.pdf