

Looking for Sterile Neutrinos via Neutral-Current Disappearance with NOvA

Adam Aurisano University of Cincinnati

The 19th International Workshop on Neutrinos from Accelerators 26 September 2017

NuMI Off-Axis v_{e} Appearance Experiment

NOvA is a long-baseline neutrino oscillation experiment located 14 mrad offaxis from the NuMI beam designed to measure:

v_{e} appearance

- Mass hierarchy θ_{23} octant
- CP violation
- - Improved precision on $|\Delta m^2_{_{32}}|$ and $\theta_{_{23}}$

NC disappearance

- Search for sterile neutrinos
- Constrain $\theta_{_{34}}$ and $\theta_{_{24}}$

Others

- Short-baselineSupernovaeExotics
- Cross sections

NuMI Off-Axis v_{e} Appearance Experiment

NOvA is a long-baseline neutrino oscillation experiment located 14 mrad offaxis from the NuMI beam designed to measure:

NOvA Detector Design

Far detector (FD)

- 14 kton
- 65% active mass
- ~344,000 channels

Near detector (ND)

- 0.3 kton
- Functionally equivalent to FD for systematic uncertainty reduction
 - Faster electronics
 - Muon catcher to contain muons
- ~20,000 channels

 1
 0
 0
 0
 0

 1
 0
 0
 0
 0
 0

 1
 0
 0
 0
 0
 0

 1
 0
 0
 0
 0
 0

 1
 0
 0
 0
 0
 0

 1
 0
 0
 0
 0
 0

 1
 0
 0
 0
 0
 0

 1
 0
 0
 0
 0
 0

 1
 0
 0
 0
 0
 0

Wavelength shifting fibers carry light out of the cells to APDs.

3.9 cm

6.0 cm

Accumulated Dataset

2016 analysis: 6 Feb 2014 – 1 May 2016 \rightarrow 6.05x10²⁰ POT

2017 analysis: 6 Feb 2014 – 20 Feb 2017 \rightarrow 8.85x10²⁰ POT ~50% increase in exposure

26 September 2017

NuFact 2017 - Adam Aurisano

Sterile Neutrinos

- Short-baseline experiments (LSND, MiniBooNE) observed anomalous excesses of $v_e(\overline{v}_e)$ appearance in $v_\mu(\overline{v}_\mu)$ beams
- Observed rate from calibration sources used at gallium radiochemical solar neutrino experiments produced results consistent with v_e or \overline{v}_e disappearance over short baselines
- The anomalies could all be explained by oscillations driven by a mass splitting $\Delta m^2 \sim 1 \ eV^2$
 - Not consistent with three known flavors
- Measurement of Z decays at LEP only allows for three light active neutrinos
 - Any extra light neutrino must be sterile

Sterile Neutrinos

- Short-baseline experiments (LSND, MiniBooNE) observed anomalous excesses of $v_e(\overline{v}_e)$ appearance in $v_\mu(\overline{v}_\mu)$ beams
- Observed rate from calibration sources used at gallium radiochemical solar neutrino experiments produced results consistent with v_e or $\overline{v_e}$ disappearance over short baselines
- The anomalies could all be explained by oscillations driven by a mass splitting $\Delta m^2 \sim 1 \ eV^2$
 - Not consistent with three known flavors
- Measurement of Z decays at LEP only allows for three light active neutrinos
 - Any extra light neutrino must be sterile

3+1 Model

$$U = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} & U_{e4} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} & U_{\mu 4} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} & U_{\tau 4} \\ U_{s1} & U_{s2} & U_{s3} & U_{s4} \end{pmatrix}$$

- Simplest model adds one sterile neutrino
- Expand PMNS matrix from $3x3 \rightarrow 4x4$
- 6 new parameters
 - One mass scale (Δm_{41}^2)
 - Three mixing angles $(\theta_{14}, \theta_{24}, \theta_{34})$
 - Two CP-violating phases $(\delta_{14}, \delta_{24})$

- Neutral current interaction rate is the same for 3 active neutrinos
 - NC rate is insensitive to 3 flavor oscillations
- Sterile neutrino do not interact in the detector
 - $\nu_{\mu} \rightarrow \nu_{s}$ reduce the NC rate at the FD
- One oscillation term for $\nu_{\mu} \rightarrow \nu_{s}$ oscillations at atmospheric frequency
- Narrow-band beam was optimized to produce events with energies very close to atmospheric maximum

 $1 - P(\nu_{\mu} \to \nu_{s}) \approx$ $1 - 4 |U_{\mu3}|^{2} |U_{s3}|^{2} \sin^{2} \Delta_{31}$ $- 4 |U_{\mu4}|^{2} |U_{s4}|^{2} \sin^{2} \Delta_{41}$ $- 8 \operatorname{Re}(Z) \sin \Delta_{31} \cos \Delta_{43} \sin \Delta_{41}$ $- 8 \operatorname{Im}(Z) \sin \Delta_{31} \sin \Delta_{43} \sin \Delta_{41}$ $Z = U_{\mu4}^{*} U_{s4} U_{\mu3} U_{s3}^{*}$

- Neutral current interaction rate is the same for 3 active neutrinos
 - NC rate is insensitive to 3 flavor oscillations
- Sterile neutrino do not interact in the detector
 - $\nu_{\mu} \longrightarrow \nu_{\rm s}$ reduce the NC rate at the FD
- One oscillation term for $\nu_{\mu} \rightarrow \nu_{s}$ oscillations at atmospheric frequency
- Narrow-band beam was optimized to produce events with energies very close to atmospheric maximum
- Search in 0.05 $eV^2 < \Delta m_{41}^2 < 0.5 eV^2$
 - No significant ND oscillations
 - Rapid oscillations at FD \rightarrow no Δm_{41}^2 dependence

- Neutral current interaction rate is the same for 3 active neutrinos
 - NC rate is insensitive to 3 flavor oscillations
- Sterile neutrino do not interact in the detector
 - $\nu_{\mu} \longrightarrow \nu_{\rm s}$ reduce the NC rate at the FD
- One oscillation term for $\nu_{\mu} \rightarrow \nu_{s}$ oscillations at atmospheric frequency
- Narrow-band beam was optimized to produce events with energies very close to atmospheric maximum
- Depth of oscillations at the oscillation maximum is primarily controlled by $\theta_{\scriptscriptstyle 34}$
- θ_{24} scales shape of descent into the oscillation maximum

- Neutral current interaction rate is the same for 3 active neutrinos
 - NC rate is insensitive to 3 flavor oscillations
- Sterile neutrino do not interact in the detector
 - $\nu_{\mu} \rightarrow \nu_{s}$ reduce the NC rate at the FD
- One oscillation term for $\nu_{\mu} \rightarrow \nu_{s}$ oscillations at atmospheric frequency
- Narrow-band beam was optimized to produce events with energies very close to atmospheric maximum
- θ_{23} also controls the depth of the oscillation maximum
 - Constrain to the NOvA degenerate minima
- The CP-violating phase, δ_{24} , can reduce NC disappearance even as θ_{24} and θ_{34} become large.

26 September 2017

Event Topologies

Convolutional Visual Network

- Convolutional Visual Network (CVN) is a selection algorithm based on Deep-Learning techniques
- Uses all information in minimally reconstructed events
- Is a multi-purpose classifier
 - Capable of selecting $\nu_{e}, \nu_{\mu}, \nu_{\tau}$, and NC

Treat each event as an image with cells as pixels and charge as color value

Individual learned filters are sensitive to physics: e.g. hadronic activity or muon tracks

Convolutional layers learn filters to optimally extract features from the data

JINST 11 (2016) P09001

NC/CC Separation

- The CVN NC classifier is excellent at separating NC events from beam background
- Good data/MC agreement in the ND

Rejecting Cosmic Events

Rejecting Cosmic Events

- The FD sees ~150,000 cosmic rays/second
- Cosmogenic neutrons can be difficult to separate from NC events
- In 2016 analysis, removed all events in the top 5 m of the FD
- Replacing this cut with a BDT designed to separate cosmogenic neutrons and NC events using reconstructed shower variables
- Reduces the cosmic rate by 50% compared to the 2016 analysis

NC Selection: Efficiency and Purity

26 September 2017

Extrapolation

- The FD prediction is generated using the extrapolation process
 - Partially cancels systematics uncertainties that are correlated between the ND and FD
- Since each component oscillates differently, decompose observed ND spectrum according to simulated proportions
- Use a migration matrix to convert reconstructed energy to true energy
- The data and MC ND components are used to correct the corresponding FD component
- Apply oscillations and unfold back to reconstructed energy

$$F_{jk\beta}^{\text{pred}} = \sum_{\alpha} \frac{N_{jk\alpha}^{\text{data}}}{N_{jk\alpha}^{\text{sim}}} F_{jk\beta}^{\text{sim}} P(\nu_{\alpha}, \nu_{\beta}).$$

- In scintillation-based experiments, Cerenkov light is often neglected
- Scintillation yields are very large compared to Cerenkov light yields
- Most Cerenkov light is produced at short wavelengths that cannot be absorbed by the NOvA
- However, short wavelength light can be absorbed by the pseudocumene, PPO, and bis-MSB in scintillator
- Absorbed and re-emitted Cerenkov light is a small but important signal that is particularly important for the modeling of the detector response to hadronic activity

- The detector energy response is calibrated using the energy deposited by stopping cosmic muons at their minimum ionization point
- Failing to account for Cerenkov light biases the calibration of slow particles by ~ 5%
- In previous analyses, the resulting hadronic data/MC disagreement was minimized by tuning scintillator quenching, requiring significant systematic uncertainties

- Modeling the absorption and re-emission of Cerenkov light produced significant improvements in data/MC agreement, especially for:
 - Number of hits
 - Energy/hit
- Allows for a reduction in systematic uncertainties

Systematics

- ND Composition systematic is determined by extrapolating the ND data/MC disagreement differently
- Previously the largest systematic (7% for signal, 10% for background)
- Due to improved modeling of the hadronic system, this uncertainty is halved

FD Prediction

- Predictions depend on the choice of three flavor parameters
- NOvA's combined $\nu_{\rm e}$ and ν_{μ} analysis found two degenerate best fits
 - Lower octant
 - $\sin^2\theta_{23} = 0.404 \pm 0.030$
 - $\delta_{13} = 1.48\pi$
 - $\Delta m_{32}^2 = (2.67 \pm 0.11) \times 10^{-3} \text{ eV}^2$
 - Upper octant
 - $\sin^2 \theta_{23} = 0.623 \pm 0.030$
 - $\delta_{13} = 0.74\pi$
 - $\Delta m_{32}^2 = (2.67 \pm 0.11) \times 10^{-3} \text{ eV}^2$
- In the 2016 analysis, cosmics were the dominant background
- After analysis improvements, ν_{μ} CC is the dominant background

FD Prediction

- Predictions depend on the choice of three flavor parameters
- NOvA's combined $\nu_{\rm e}$ and ν_{μ} analysis found two degenerate best fits
 - Lower octant
 - $\sin^2\theta_{23} = 0.404 \pm 0.030$
 - $\delta_{13} = 1.48\pi$
 - $\Delta m_{32}^2 = (2.67 \pm 0.11) \times 10^{-3} \text{ eV}^2$
 - Upper octant
 - $\sin^2 \theta_{23} = 0.623 \pm 0.030$
 - $\delta_{13} = 0.74\pi$
 - $\Delta m_{32}^2 = (2.67 \pm 0.11) \times 10^{-3} \text{ eV}^2$
- In the 2016 analysis, cosmics were the dominant background
- After analysis improvements, CC is the dominant background

	NC Signal	CC Bkg	Cosmics
Upper oct.	148.3	36.3	7.9
Lower oct.	148.3	36.0	7.9
Max. Mixing	148.3	34.9	7.9

NC Disappearance Data

FD Data

Observed: 214

No depletion of neutral current events observed

Event Distributions

Event Distributions

Comparison to Three-Flavor Predictions

$$R_{
m NC} \equiv rac{F^{
m data} - \sum F^{
m pred}(
m bkg)}{F^{
m pred}(
m NC)}$$

- R-ratio is a model independent measure of NC disappearance
 - No NC disappearance $\rightarrow R = 1$
- Calculate in two energy regions
 - 0 2.5 GeV
 - 119 events observed
 - 2.5 10 GeV
 - 95 events observed

	0-2.5 GeV	2.5-10 GeV
Upper octant	$1.18 \pm 0.14 \pm 0.12$	$1.07 \pm 0.14 \pm 0.12$
Lower octant	1.18 ± 0.14 ± 0.12	$1.08 \pm 0.14 \pm 0.12$
Max. mixing	1.19 ± 0.14 ± 0.12	$1.08 \pm 0.14 \pm 0.12$

2016 analysis: R = $1.19 \pm 0.16 \pm 0.10$

Shape Fit: 2D 90% C.L. Limits

- Fit separately for each three-flavor degenerate solution and take the least constraining result
- Solar and reactor data constrains $\sin^2\theta_{14}$ < 0.041
 - Assume $\theta_{14} = 0$ and $\delta_{14} = 0$
- Profile over $\theta_{_{23}}$, $\Delta m_{_{32}}^2$, $\delta_{_{24}}$
- Limit Δm_{41}^2 :
 - $0.05 \text{ eV}^2 < \Delta m_{41}^2 < 0.5 \text{ eV}^2$
 - No significant ND oscillations
 - Rapid oscillations in FD
- Perform a shape-based fit for θ_{24} and θ_{34}

Shape Fit: 2D 90% C.L. Limits

		θ_{24}	θ_{34}	$ U_{\mu 4} ^2$	$ U_{\tau 4} ^2$
	NOvA 2016	20.8°	31.2°	0.126	0.268
	NOvA 2017	16.2°	29.8°	0.078	0.228
_	MINOS	7.3°	26.6°	0.016	0.20
	SuperK	11.7°	25.1°	0.041	0.18
	IceCube	4.1°	-	0.005	-
7	IceCube-DeepCore	19.4°	22.8°	0.11	0.15

Fit in the lower octant is the least constraining

NOvA 2017 analysis improves over the NOvA 2016 limit $\rightarrow \theta_{24}$ by 4.6° $\rightarrow \theta_{34}$ by 1.4°

Future of NOvA Sterile Results: Short-Baseline Searches

- NOvA short-baseline $\nu_{\rm e}$ appearance ν_{μ} disapperance joint fit
 - Correlated uncertainties between the $\nu_{\rm e}$ and ν_{μ} samples partially cancel
 - Probes LSND and MiniBooNE allowed regions with one year of NOvA data

- NOvA short-baseline v_{τ} appearance
 - Search for ν_τ produced by oscillations in the high energy tail
 - NOvA will be competitive with previous experiments after 3 years of running

Summary

- Performed a search for a depletion in the NC rate at the NOvA FD with 8.85x10²⁰ POT
 - Significant analysis improvements over the 2016 analysis
 - 50% increase in statistics
 - Improved cosmic rejection lead to a 50% reduction in the cosmic rate
 - Allowed for an increase in usable FD mass, increasing the NC selection efficiency
 - Significant modeling improvements halved the systematic error due ND data/MC disagreements and allowed for a shape-based fit
- Results are consistent with no sterile oscillations
- For 0.05 $eV^2 < \Delta m_{41}^2 < 0.5 eV^{2}$:
 - θ_{24} < 16.2° and θ_{34} < 29.8°
 - Competitive with other experiments with 1/3 of planned exposure
- Short-baseline sterile neutrinos searches are in progress
- Analysis improvements to allow for fitting a wider range of Δm_{41}^2 are in progress
- Stay tuned!

Thank You!

26 September 2017

Backup Slides

- In previous analyses, the scintillator non-linearity was tuned to minimize the data/MC disagreement energy lost by protons
- Recently, Cerenkov light was uncovered as an extra source of scintillator non-linearity
 - Short-wavelength Cerenkov light can be absorbed and re-emitted by the scintillator at detectable wavelengths
- Modeling this process produced significant improvements in data/MC agreement, especially for:
 - Energy/hit
 - Number of hits

2D Limits

NOvA NC Disappearance

- Events classified with CVN
- Near detector spectrum agrees well within large NC cross-section uncertainties
- Extrapolate ND data to FD assuming no ND oscillations
 - Restrict analysis to small Δm_{41}^2 values

Far detector predictions

Total	NC	$\nu_{\mu} CC$	Beam $v_{_{e}}$	Cosmics
83.7 ±8.3	60.6	4.8	3.6	14.3

Calorimetric Energy (GeV)

26 September 2017

NOvA NC Disappearance

Observe 95 events

Compare to three-flavor:

$$R = \frac{N_{data} - BG}{S_{NC}}$$
$$= 1.19 \pm 0.16(stat.) \pm 0.11(syst.)$$

No evidence for sterile neutrino mixing

Fitting NC rate with the 3+1 model: For 0.05 eV² < Δm_{41}^2 < 0.5 eV² θ_{34} < 35°, θ_{24} < 21°

NOvA Preliminary

Convolutional Neural Networks

- Deep learning is a new paradigm that has caused a renaissance in the machine learning community.
 - Made possible by better activation functions, better weight initialization, and the advent of cheap GPUs.
- One variant the convolutional neural network has been highly successful at image recognition tasks.
- Two basic type of layers:
 - Convolutional layers apply discrete convolutions using learned kernels to extract features from the image.
 - Pooling layers downsample the image and increase translational invariance in the final output.
- Stacked structure of convolutional and pooling layers extract increasingly abstract features from the input raw data encoding both local and global structure.
- Relatively new:
 - LeNet one of the first (1998)
 - AlexNet the one that started the revolution (2012)

2x2 MaxPool Stride 2

Understanding the Network: Feature Embedding with t-SNE

