TAU NEUTRINO
APPEARANCE IN ICECUBE

Philipp Eller
Penn State University
September 29th 2017
ATMOSPHERIC TAU NEUTRINOS

- Intrinsic ν_τ production in atmosphere negligible
- When studying $O(10)$ GeV Neutrinos and below, earth diameter provides perfect L/E to look at ν_μ disappearance
 - We look at events in the Energy-$\cos(\text{zenith})$ plane
- A disappeared ν_μ should mostly appear in the ν_τ flavor

\[
\cos(\text{zenith}) \propto \text{baseline}
\]
PREVIOUS RESULTS

 - CNGS ~17 GeV muon neutrinos / 732 km baseline
 - Observation of ν_τ appearance with 5.1 sigma significance
 - Total of 5 individually identified ν_τ candidates (over 0.25 total background)
 - Only weak constraints on ν_τ normalization: 1.8 -1.1 +1.8 (90% C.L.)

- Super-K 2016 (presented at Neutrino 2016)
 - Evidence with a significance of 4.6 sigma
 - Based on 15 years of data
 - Best constraint on ν_τ normalization with 1.42 +/- 0.32 (68% C.L.)
 - Energies around ~5 GeV
- τ-sector of Neutrino oscillations is the least well measured
- Experimental constraints ~order of magnitude worse than for e and μ sectors

- Measurement of tau appearance can be used to test PMNS unitarity
- Deviation from unitarity can be an indicator for new physics

\[
\begin{pmatrix}
\nu_e \\
\nu_\mu \\
\nu_\tau
\end{pmatrix} =
\begin{pmatrix}
U_{e1} & U_{e2} & U_{e3} \\
U_{\mu1} & U_{\mu2} & U_{\mu3} \\
U_{\tau1} & U_{\tau2} & U_{\tau3}
\end{pmatrix}
\begin{pmatrix}
\nu_1 \\
\nu_2 \\
\nu_3
\end{pmatrix}
\]
DEEPCORE EXTENSION OF ICECUBE

- Additional 8 strings with densely spaced, high efficiency optical modules (DOMs) in addition to the 78 standard IceCube strings
- In clearest part of Ice (below dust layer)
- Surrounded by IceCube strings (used as atm. muon veto)
- Neutrino energies down to \(~5\) GeV
CC AND NC INTERACTIONS

- **Charged Current (CC)** interaction of neutrinos reveals their flavor from the outgoing lepton
 - This channel needed to unambiguously identify ν_τ (e.g. OPERA)
 - Cross-section suppressed by heavy τ, threshold energy of 3.5 GeV, cross section \simorder of magnitude lower than that of ν_μ

- **Neutral Current (NC)** interactions are indistinguishable for the 3 flavors
 - Still, the disappearance and appearance happen in specific locations in L/E
 - can be used to help constrain the ν_τ normalization

* for better comparison we provide both result separately, CC+NC and CC-only
ICECUBE EVENT SIGNATURES

- Fully contained events inside the DeepCore fiducial Volume
- Reconstructed using a full Cascade + Track hypothesis
 - position, direction, energy and PID (= track or cascade like event)

Track like

```
\nu_{\mu} \rightarrow \text{Nucl eus}
```

Hadron shower

Cherenkov light

\(\mu\)

Typical \(\nu_{\mu}\) event:
Energy deposited in
- Extended muon track (E \(\sim\) length)
- Hadron shower from e.g. DIS

Cascade like

```
\nu_{e/\tau} \rightarrow \text{Nucl eus}
```

Hadron shower

\(\nu_{e/\tau}\) event:
All energy deposited in form of showers (hadronic and electro-magnetic)
Spatially more compact (no track)
- Our ability to distinguish track and cascade events mainly depending on neutrino energy
 - Higher energy = longer muon tracks

- Separation based on an additional reconstruction using cascade only (no track)
 - Difference in likelihood to the standard reconstruction used as classifier
- Actual fit of the data is done using two 2d-histograms
 - Reconstructed neutrino energy (between 5.6 and 56 GeV)
 - Reconstructed zenith angle (covering the full sky from \(\cos(\text{zenith}) = -1\) to +1)
 - Using 8x8 bins, for cascade and track like events separately

- \(S/\sqrt{B}\) plot showing region where we get most significance from
 - \(S = \nu_\tau, B = (\nu_e + \nu_\mu + \text{Atm. } \mu)\)
SYSTEMATIC UNCERTAINTIES

- Incorporating a large variety of nuisance parameters in the measurement

- Covering uncertainties of:
 - Initial atmospheric neutrino flux
 - Interaction (cross sections)
 - Oscillation parameters
 - Detector uncertainties (efficiencies of optical modules and ice uncertainties)
 - Atmospheric muon background

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Prior</th>
<th>Best fit (CC+NC)</th>
<th>Best fit (CC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flux and cross sections</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ν_e/ν_μ ratio</td>
<td>1.0 ± 0.05</td>
<td>1.02</td>
<td>1.02</td>
</tr>
<tr>
<td>$\nu/\bar{\nu}$ ratio, zenith dep. (σ)</td>
<td>0.0 ± 1.0</td>
<td>-1.15</td>
<td>-1.11</td>
</tr>
<tr>
<td>$\nu/\bar{\nu}$ ratio, energy dep. (σ)</td>
<td>0.0 ± 1.0</td>
<td>0.08</td>
<td>0.11</td>
</tr>
<tr>
<td>Δγ (spectral index)</td>
<td>0.0 ± 0.1</td>
<td>-0.072</td>
<td>-0.074</td>
</tr>
<tr>
<td>effective lifetime (y)</td>
<td>-</td>
<td>2.25</td>
<td>2.25</td>
</tr>
<tr>
<td>M_A (quasi-elastic) (GeV)</td>
<td>0.99±0.248</td>
<td>0.884</td>
<td>0.881</td>
</tr>
<tr>
<td>M_A (resonance) (GeV)</td>
<td>1.12±0.22</td>
<td>0.905</td>
<td>0.901</td>
</tr>
<tr>
<td>ν NC Normalization</td>
<td>1.0 ± 0.2</td>
<td>1.15</td>
<td>1.16</td>
</tr>
<tr>
<td>Oscillation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>θ_{13} (°)</td>
<td>8.5 ± 0.21</td>
<td>8.5</td>
<td>8.5</td>
</tr>
<tr>
<td>$\sin^2 \theta_{23}$</td>
<td>-</td>
<td>0.52</td>
<td>0.52</td>
</tr>
<tr>
<td>Δm^2_{31} (10^{-3}eV²)</td>
<td>-</td>
<td>2.36</td>
<td>2.36</td>
</tr>
<tr>
<td>Detector</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>optical eff., overall (%)</td>
<td>100±10</td>
<td>103</td>
<td>104</td>
</tr>
<tr>
<td>optical eff., lateral (σ)</td>
<td>0.0 ± 1.0</td>
<td>-0.074</td>
<td>0.046</td>
</tr>
<tr>
<td>optical eff., head-on (a.u.)</td>
<td>-</td>
<td>-1.28</td>
<td>-1.16</td>
</tr>
<tr>
<td>local ice model</td>
<td>-</td>
<td>-0.11</td>
<td>-0.07</td>
</tr>
<tr>
<td>Background</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atm. μ fraction (%)</td>
<td>-</td>
<td>4.9</td>
<td>4.9</td>
</tr>
</tbody>
</table>
DATA SAMPLE

- Result based on 3 years of data
- Total ~41k events
 - 1.5k CC ν_τ events
 - 600 NC ν_τ events
 - ~2k background events from atmospheric μ
- Excellent Data/MC agreement

<table>
<thead>
<tr>
<th>Type</th>
<th>No. events</th>
<th>Uncert.</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\nu_e + \bar{\nu}_e$ CC</td>
<td>9391.0</td>
<td>24.4</td>
</tr>
<tr>
<td>$\nu_e + \bar{\nu}_e$ NC</td>
<td>860.7</td>
<td>8.8</td>
</tr>
<tr>
<td>$\nu_\mu + \bar{\nu}_\mu$ CC</td>
<td>23093.5</td>
<td>39.4</td>
</tr>
<tr>
<td>$\nu_\mu + \bar{\nu}_\mu$ NC</td>
<td>3016.5</td>
<td>15.8</td>
</tr>
<tr>
<td>$\nu_\tau + \bar{\nu}_\tau$ CC</td>
<td>1798.6</td>
<td>11.1</td>
</tr>
<tr>
<td>$\nu_\tau + \bar{\nu}_\tau$ NC</td>
<td>778.0</td>
<td>8.1</td>
</tr>
<tr>
<td>atm. μ</td>
<td>2016.0</td>
<td>49.0</td>
</tr>
<tr>
<td>total expected</td>
<td>40954.2</td>
<td>71.2</td>
</tr>
<tr>
<td>observed</td>
<td>40902</td>
<td>202</td>
</tr>
</tbody>
</table>
TAU NEUTRINO DISTRIBUTIONS

- Visible energies distributed around ~ 15 GeV (Analysis range $5.6 - 56$ GeV)
- ν_τ events appearing in upgoing (-1,0) (earth crossing trajectories)
- Mostly classified in cascade event category

background subtracted data overlayed with best-fit ν_τ expectations
RESULT

- ν_τ normalization (with 68% C.I.)
 - CC+NC: 1.25 ±0.42 -0.37
 - CC-only: 1.20 ±0.49 -0.45

- ν_τ appearance significance (exclusion of no-appearance)
 - CC+NC: 4.1 σ
 - CC-only: 3.0 σ

- c.f. talk “IceCube/DeepCore Results and PINGU” from this session, PINGU able to constrain ν_τ norm < 10%
CONCLUSIONS

- Measured ν_τ normalizations of

 $1.25 \pm 0.42 -0.37$ (CC+NC)
 $1.20 \pm 0.49 -0.45$ (CC only)

- Based on modestly sized 3y dataset
 - Improved event selection underway
 - Additional 2y of data already collected and experiment continues running

- First ν_τ appearance measurement by IceCube
 - Consistent with other results
 - Competitive result with worlds best measurements
 - Different (higher) energy regime than Super-K
 - Providing path forward for future measurements of the underexplored ν_τ sector

▶ STAY TUNED!