

TAU NEUTRINO APPEARANCE IN ICECUBE

Philipp Eller Penn State University September 29th 2017

ATMOSPHERIC TAU NEUTRINOS

- Intrinsic u_{τ} production in atmosphere negligible
- When studying O(10) GeV Neutrinos and below, earth diameter provides perfect L/E to look at v_{μ} disappearance
 - We look at events in the Energy-cos(zenith) plane
- A disappeared u_{μ} should mostly appear in the u_{τ} flavor

$\cos(\text{zenith}) \propto \text{baseline}$

PREVIOUS RESULTS

- OPERA 2015 (https://arxiv.org/abs/1507.01417)
 - CNGS \sim 17 GeV muon neutrinos / 732 km baseline
 - Observation of u_{τ} appearance with 5.1 sigma significance
 - Total of 5 individually identified $u_{ au}$ candidates (over 0.25 total background)
 - Only weak constraints on $u_{ au}$ normalization: 1.8 -1.1 +1.8 (90% C.L.)
- Super-K 2016 (presented at Neutrino 2016)
 - Evidence with a significance of 4.6 sigma
 - Based on 15 years of data
 - Best constraint on $u_{ au}$ normalization with 1.42 +/- 0.32 (68% C.L.)
 - Energies around $\sim 5~{
 m GeV}$

RELEVANCE

- τ -sector of Neutrino oscillations is the least well measured
 - Experimental constraints \sim order of magnitude worse than for e and μ sectors
- Measurement of tau appearance can be used to test PMNS unitarity
 - Deviation from unitarity can be an indicator for new physics

DEEPCORE EXTENSION OF ICECUBE

- Additional 8 strings with densely spaced, high efficiency optical modules (DOMs) in addition to the 78 standard IceCube strings
- In clearest part of Ice (below dust layer)
- Surrounded by IceCube strings (used as atm. muon veto)

CC AND NC INTERACTIONS

- **Charged Current (CC)** interaction of neutrinos reveals their flavor from the outgoing lepton
 - This channel needed to unambiguously identify u_{τ} (e.g. OPERA)
 - Cross-section suppressed by heavy τ , threshold energy of 3.5 GeV, cross section ~order of magnitude lower than that of ν_{μ}
- Neutral Current (NC) interactions are indistinguishable for the 3 flavors
 - Still, the disappearance and appearance happen in specific locations in $\mbox{L/E}$
 - can be used to help constrain the ν_τ normalization

* for better comparison we provide both result separately, CC+NC and CC-only

ICECUBE EVENT SIGNATURES

- Fully contained events inside the DeepCore fiducial Volume
- Reconstructed using a full Cascade + Track hypothesis
 - position, direction, energy and PID (= track or cascade like event)

EVENT CLASSIFICATION

- Our ability to distinguish track and cascade events mainly depending on neutrino energy
 - Higher energy = longer muon tracks
- Separation based on an additional reconstruction using cascade only (no track)
 - Difference in likelihood to the standard reconstruction used as classifier

ANALYSIS

- Actual fit of the data is done using two 2d-histograms
 - Reconstructed neutrino energy (between 5.6 and 56 GeV)
 - Reconstructed zenith angle (covering the full sky from cos(zenith) -1 to +1)
 - Using 8x8 bins, for cascade and track like events separately
 - S/sqrt(B) plot showing region where we get most significance from

- S =
$$\nu_{\tau}$$
, B = (ν_{e} + ν_{μ} + Atm. μ)

SYSTEMATIC UNCERTAINTIES

- Incorporating a large variety of nuisance parameters in the measurement
- Covering uncertainties of:
 - Initial atmospheric neutrino flux
 - Interaction (cross sections)
 - Oscillation parameters
 - Detector uncertainties (efficiencies of optical modules and ice uncertainties)
 - Atmospheric muon background

Parameter Prior		Best fit	Best fit	
	Prior	(CC+NC)	(CC)	
Flux and cross sections				
ν_e/ν_μ ratio	1.0 ± 0.05	1.02	1.02	
$\nu/\bar{\nu}$ ratio, zenith dep. (σ)	0.0 ± 1.0	-1.15	-1.11	
$\nu/\bar{\nu}$ ratio, energy dep. (σ)	0.0 ± 1.0	0.08	0.11	
$\Delta \gamma$ (spectral index)	0.0 ± 0.1	-0.072	-0.074	
effective lifetime (y)	-	2.25	2.25	
M_A (quasi-elastic) (GeV)	$0.99^{+0.248}_{-0.149}$	0.884	0.881	
M_A (resonance) (GeV)	1.12 ± 0.22	0.905	0.901	
ν NC Normalization	1.0 ± 0.2	1.15	1.16	
Oscillation				
θ_{13} (°)	8.5 ± 0.21	8.5	8.5	
$\sin^2 \theta_{23}$	-	0.52	0.52	
$\Delta m_{31}^2 \ (10^{-3} {\rm eV}^2)$	-	2.36	2.36	
Detector				
optical eff., overall (%)	100 ± 10	103	104	
optical eff., lateral (σ)	0.0 ± 1.0	-0.074	0.046	
optical eff., head-on (a.u.)	-	-1.28	-1.16	
local ice model	-	-0.11	-0.07	
Background				
Atm. μ fraction (%)	-	4.9	4.9	

DATA SAMPLE

- Result based on 3 years of data
 - Total ~41k events
 - 1.5k CC $\nu_{ au}$ events
 - 600 NC $\nu_{\mathrm{\tau}}$ events
 - \sim 2k background events from atmospheric μ
 - Excellent Data/MC agreement

Type	No. events	Uncert.
$\nu_e + \bar{\nu}_e \ \mathrm{CC}$	9391.0	24.4
$\nu_e + \bar{\nu}_e$ NC	860.7	8.8
$\nu_{\mu} + \bar{\nu}_{\mu} \ CC$	23093.5	39.4
$\nu_{\mu} + \bar{\nu}_{\mu}$ NC	3016.5	15.8
$\nu_{\tau} + \bar{\nu}_{\tau} \ CC$	1798.6	11.1
$\nu_{\tau} + \bar{\nu}_{\tau} \operatorname{NC}$	778.0	8.1
atm. μ	2016.0	49.0
total expected	40954.2	71.2
observed	40902	202

TAU NEUTRINO DISTRIBUTIONS

- Visible energies distributed around \sim 15 GeV (Analysis range 5.6 56 GeV)
- v_{τ} events appearing in upgoing (-1,0) (earth crossing trajectories)
- Mostly classified in cascade event category

best-fit $u_{ au}$ expectations

RESULT

- v_{τ} normalization (with 68% C.I.)
 - CC+NC: 1.25 +0.42 -0.37
 - CC-only: 1.20 +0.49 -0.45
- v_{τ} appearance significance (exclusion of no-appearance)
 - CC+NC: **4.1** σ
 - CC-only: **3.0** σ
- c.f. talk "<u>lceCube/DeepCore</u> <u>Results and PINGU</u>" from this session, PINGU able to constrain v_{τ} norm < 10%

A STATE

CONCLUSIONS

- Measured u_{τ} normalizations of
 - 1.25 +0.42 -0.37 (CC+NC) 1.20 +0.49 -0.45 (CC only)
- Based on modestly sized 3y dataset
 - Improved event selection underway
 - Additional 2y of data already collected and experiment continues running
- First ν_τ appearance measurement by IceCube
 - Consistent with other results
 - Competitive result with worlds best measurements
 - Different (higher) energy regime than Super-K
 - Providing path forward for future measurements of the underexplored $u_{ au}$ sector

STAY TUNED!

