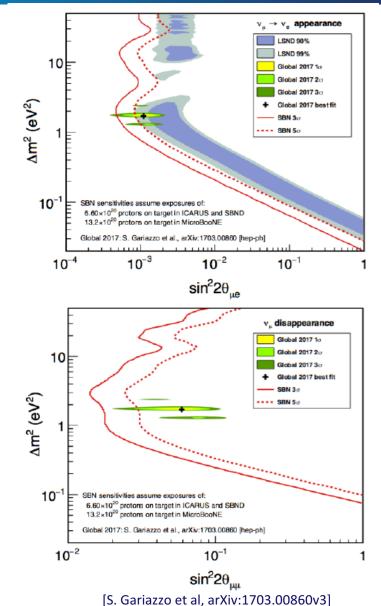
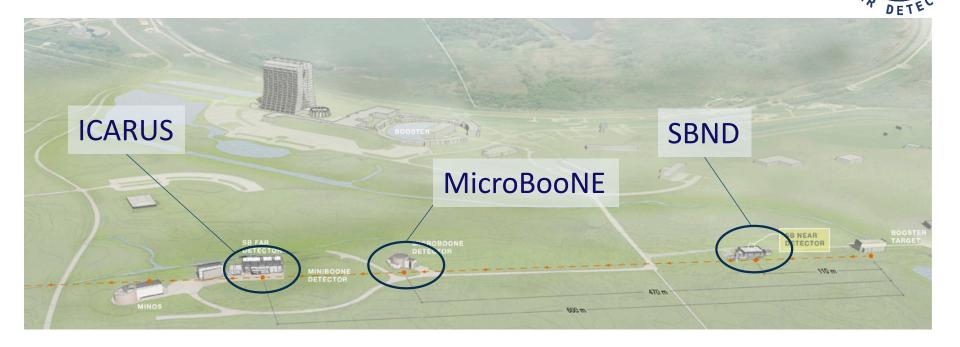


Neutrino Cross-section Measurement Prospects with SBND

NuFact 2017


September 26th 2017

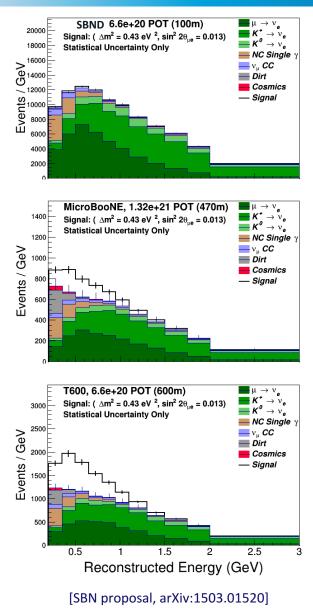
Nicola McConkey for the SBND Collaboration


Short Baseline Neutrino (SBN) program goals

- Experimental anomalies have been observed in short baseline (< 1 km) neutrino experiments:</p>
 - LSND: measured an 3.8 σ excess in v_{μ} -> v_{e} appearance channel
 - MiniBooNE: measured a 3.4 σ excess in v_µ-> v_e and a 2.4 σ excess in \overline{v}_{μ} -> \overline{v}_{e} appearance channels
- $\begin{tabular}{ll} \hline \Box & Can be interpreted as a large Δm^2 oscillation Δm^2 description $\Delta m^2$$
 - Requires the addition of a fourth "sterile" neutrino
 - Δm²₄₁ ≈ 1 eV²
- □ SBN will confirm or definitively refute these results at 5σ level, with major implications for neutrino physics

Short Baseline Neutrino Program

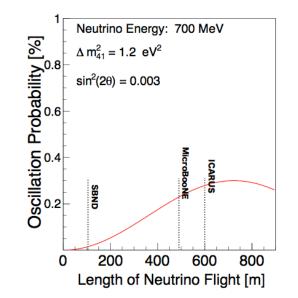
Detector	Baseline (m)	Active LAr mass (tonnes)
SBND	110	112
MicroBooNE	470	87
ICARUS T-600	600	476


Three detector measurement program in the Fermilab Booster Neutrino Beam (BNB)

□ LAr TPC detectors

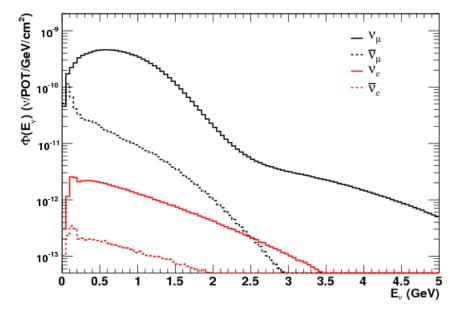
- Same nuclear target and detector technology
- Reducing effect of systematic uncertainties

SBN


SBN program goals

SBND OF DETECTO

SBN program will measure neutrino oscillations in the BNB


- Both appearance and disappearance
- Multiple detectors at different baselines

Role of SBND is to measure the unoscillated neutrino flux

- Extremely high statistics for $\nu_{\mu}\text{-}\text{CC}$ and $\nu_{e}\text{-}\text{CC}$ and NC interactions
- Tuning of flux and cross-section modelling to produce unoscillated predictions for MicroBooNE and ICARUS
- Systematic error reduction for SBN

Booster Neutrino Beam

8 GeV protons on Beryllium target

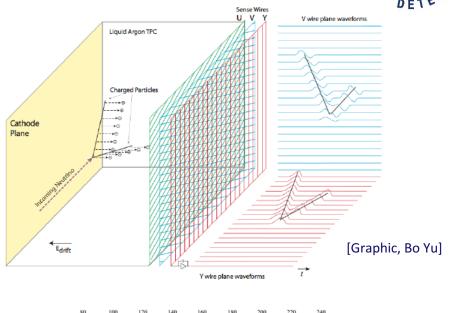
Low energy neutrino beam at Fermilab

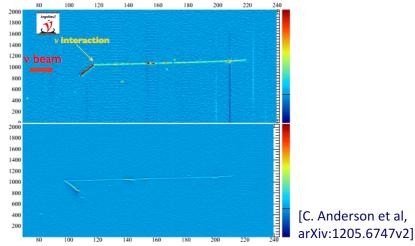
 $\Box < E_v > \approx 700 \text{ MeV}$

Same beam as MiniBooNE

- □ Stably running for a decade
 - Well characterised
- Muon neutrinos with small electron neutrino contamination: <0.5%</p>

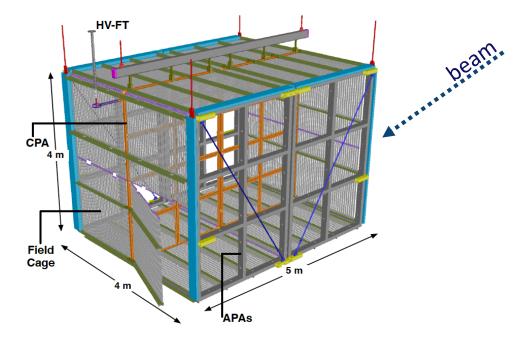
Liquid Argon Time Projection Chamber




□ Liquid argon:

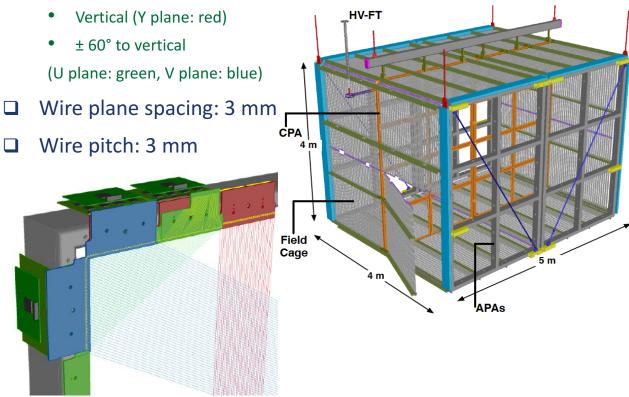
- Excellent scintillator
- Good charge transport properties

□ TPC – charge collection:

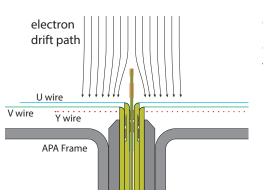

- Electric field across active detector volume
- Charged particles ionise argon atoms in the detector volume
- Ionisation electrons drifted towards anode readout plane
- Charge signal induced on wire readout planes
- 2D projection of ionisation read out from 3 planes of wires
- □ TPC photon collection:
 - Charged particles excite argon atoms
 - Prompt scintillation light
 - Allows event t₀ determination

A time projection chamber with charge and light readout

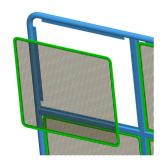
- 112 tonnes of Liquid Argon (LAr)
- Active volume of 4m x 4m x 5m


□ TPC with central cathode and 2 drift volumes with wire plane readout

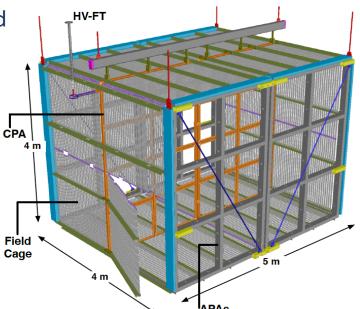
□ Drift direction perpendicular to the neutrino beam direction


Anode Plane Assembly (APA)

- Composed of two interconnected APA frames
- □ 3 planes of copper-beryllium wires:



- Wire readout on outside edges
- Jumpered interconnect between U and V planes
- Voltage deflector concept under test: minimising charge loss in gap


Cathode Plane Assembly (CPA)

- Two stainless steel frames each holding 8 mesh frames
- Welded, electropolished frame assemblies

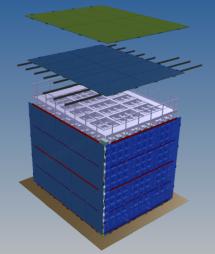
High Voltage Feedthrough

- Bias: -100 kV
- Coaxial design:
 - Polyethelene insulator
 - Stainless steel core and grounding sheath
 - Spring loaded tip for contact with HV cup

Field Cage

- Drift field 500 V/cm
- Roll formed Stainless steel profiles
- Polyethelene end caps
- Tested to 100 kV in LAr

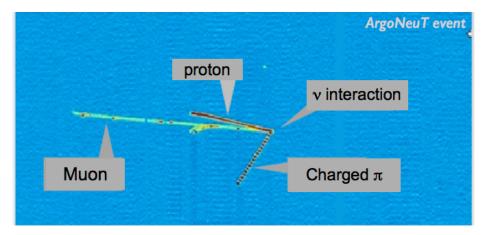
Photon detection system


Composite light collection system

- Photomultiplier tubes (PMT) coated in wavelenght shifter
- Acrylic wavelength shifting bars read out by SiPM
- ARAPUCA novel photon collection device using dichroic filters and SiPM

Cosmic ray tracker

- Detector at surface with concrete overburden:
 - Tool to mitigate the Cosmic ray background in the detector
- Seven planes surrounding the detector
- Modules of extruded scintillator strips read out by MPPC photodiodes



SBND Physics Goals

- In addition to providing near detector measurements for SBN oscillation physics:
- SBND allows us to study neutrino-nucleus interactions on argon with unprecedented sensitivity

□ LAr TPC gives

- Full 3D imaging good granularity
- Precise calorimetric information
- Topological information
- SBND has unprecedentedly high event rate
 - Exclusive topology measurements
 - Nuclear effects
- Entire 3-year MicroBooNE dataset in 2 months!

SBN

SBND Interaction rates

Process		No.	Events/	Stat.
		Events	ton	Uncert.
	ν_{μ} Events By Final State Topol			
CC Inclusive		5,212,690	46,542	0.04%
$CC 0 \pi$	$ u_{\mu}N \rightarrow \mu + Np$	3,551,830	31,713	0.05%
	$\cdot \nu_{\mu}N \rightarrow \mu + 0p$	793,153	7,082	0.11%
	$\cdot \nu_{\mu}N \rightarrow \mu + 1p$	2,027,830	18,106	0.07%
	$\cdot \nu_{\mu}N \rightarrow \mu + 2p$	359,496	3,210	0.17%
	$\cdot \nu_{\mu}N \rightarrow \mu + \geq 3p$	371,347	3,316	0.16%
CC 1 π^{\pm}	$\nu_{\mu}N \rightarrow \mu + \text{nucleons} + 1\pi^{\pm}$	1,161,610	10,372	0.09%
$CC \ge 2\pi^{\pm}$	$\nu_{\mu}N \rightarrow \mu + \text{nucleons} + \geq 2\pi^{\pm}$	97,929	874	0.32%
$CC \ge 1\pi^0$	$\nu_{\mu}N \rightarrow \mu + \text{nucleons} + \ge 1\pi^0$	497,963	4,446	0.14%
NC Inclusive		1,988,110	17,751	0.07%
NC 0 π	$\nu_{\mu}N \rightarrow \text{nucleons}$	1,371,070	12,242	0.09%
NC 1 π^{\pm}	$\nu_{\mu}N \rightarrow \text{nucleons} + 1\pi^{\pm}$	260,924	2,330	0.20%
$NC \ge 2\pi^{\pm}$	$\nu_{\mu}N \rightarrow \text{nucleons} + \geq 2\pi^{\pm}$	31,940	285	0.56%
$NC \ge 1\pi^0$	$\nu_{\mu}N \rightarrow \text{nucleons} + \ge 1\pi^0$	358,443	3,200	0.17%
	ν_e Events			
CC Inclusive		36798	329	0.52%
NC Inclusive		14351	128	0.83%
Total ν_{μ} and ν_{e} Ev	vents	7,251,948	64,750	
	ν_{μ} Events (By Physical P	Process)		
CC QE	$\nu_{\mu}n \rightarrow \mu^{-}p$	3,122,600	27,880	
CC RES	$\nu_{\mu}N \rightarrow \mu^{-}\pi N$	1,450,410	12,950	
CC DIS	$\nu_{\mu}N \rightarrow \mu^{-}X$	542,516	4,844	
CC Coherent	$\nu_{\mu}Ar \rightarrow \mu Ar + \pi$	18,881	169	
SBN proposal, arXiv	r:1503.01520]			

THE SBND DETECTOR

World's highest statistics cross-section measurements on argon

 $\leftarrow \nu_{\mu}$ -Ar (7 million in 3 years)

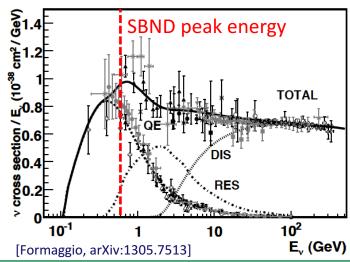
 $\leftarrow v_e$ -Ar (50,000 in 3 years)

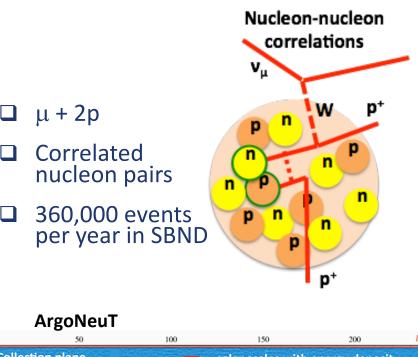
Estimated event rates (GENIE) in the SBND active volume (112 ton) for a 6.6x10²⁰ POT exposure

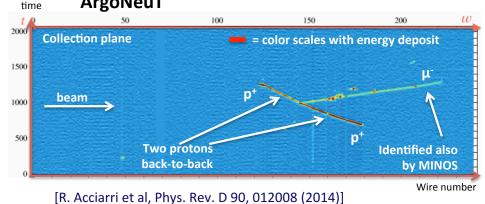
26/09/17

NuFact 2017 | Nicola McConkey

Exclusive topology measurements

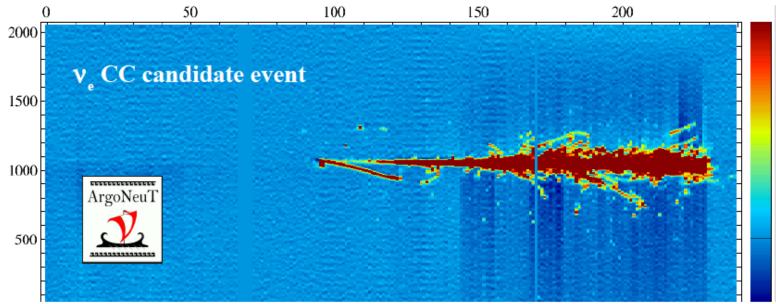

D		N	F ()	G ()		TA DETEC
Process		No.	Events/	Stat.		DEVE
		Events	ton	Uncert.		
	ν_{μ} Events (By Final State Topology)					Study of several
CC Inclusive		5,212,690	46,542	0.04%		exclusive topologies
$CC 0 \pi$	$ u_{\mu}N \rightarrow \mu + Np $	3,551,830	31,713	0.05%		allows for
	$\cdot \nu_{\mu}N \rightarrow \mu + 0p$	793,153	7,082	0.11%		disentangling
	$\cdot \nu_{\mu}N \rightarrow \mu + 1p$	2,027,830	18,106	0.07%		neutrino-nuclear
	$\cdot \nu_{\mu}N \rightarrow \mu + 2p$	359,496	3,210	0.17%		interaction
	$\cdot \nu_{\mu}N \rightarrow \mu + \geq 3p$	371,347	3,316	0.16%		phenomenology
$CC 1 \pi^{\pm}$	$\nu_{\mu}N \rightarrow \mu + \text{nucleons} + 1\pi^{\pm}$	1,161,610	10,372	0.09%		prictionenetes)
$CC \ge 2\pi^{\pm}$	$\nu_{\mu}N \rightarrow \mu + \text{nucleons} + \ge 2\pi^{\pm}$	97,929	874	0.32%		High statistics,
$CC \ge 1\pi^0$	$\nu_{\mu}N \rightarrow \mu + \text{nucleons} + \ge 1\pi^0$	497,963	4,446	0.14%		detector granularity
						and good particle ID
NC Inclusive		1,988,110	17,751	0.07%		allows this
NC 0 π	$\nu_{\mu}N \rightarrow \text{nucleons}$	1,371,070	12,242	0.09%		allows this
NC 1 π^{\pm}	$\nu_{\mu}N \rightarrow \text{nucleons} + 1\pi^{\pm}$	260,924	2,330	0.20%		
$NC \ge 2\pi^{\pm}$	$\nu_{\mu}N \rightarrow \text{nucleons} + \geq 2\pi^{\pm}$					
$NC \ge 1\pi^0$	$\nu_{\mu}N \rightarrow \text{nucleons} + \geq 1\pi^0$	ArgoNeuT				
	ν_e Events					
CC Inclusive		\mathcal{N}_{1}		10 C - 10		
NC Inclusive		111000000000000000000000000000000000000			1	
Total ν_{μ} and ν_{e} Eve	ents			prot	ton	
μ					-	
	ν_{μ} Events (By Physical Pro					🕶 muon
CC QE	$\nu_{\mu}n \rightarrow \mu^{-}p$				1.00	
CC RES	$\nu_{\mu}N \rightarrow \mu^{-}\pi N$			pion 🔪		
CC DIS	$\nu_{\mu}N \rightarrow \mu^{-}X$				•	
CC Coherent	$\nu_{\mu}Ar \rightarrow \mu Ar + \pi$					


NuFact 2017 | Nicola McConkey


Final State interactions (FSI)

SBND OF TECTO

- At SBND CC 0π (no pions in the final state) is the dominant channel
- $\hfill\square$ Can quantify nuclear effects in v-Ar scattering with v_{\mu} and v_e CC 0 \pi
- Direct experimental investigation and quantification of nuclear effects and impact on rates, final states and kinematics
- SBND data will inform neutrino MC generators and discriminate between FSI models



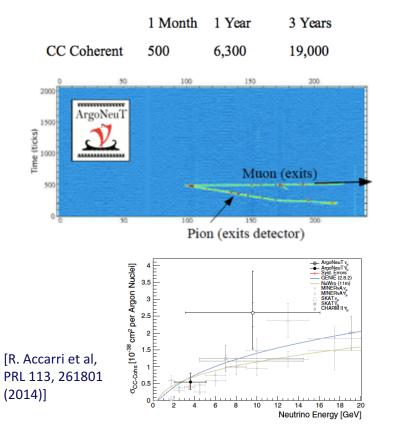
Drift

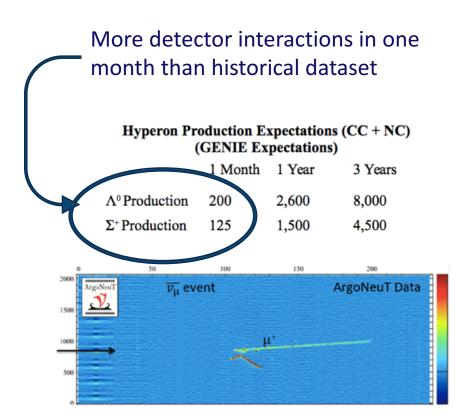
Electron neutrino interactions

SBND OF DETECTO

- High statistics electron neutrino sample hugely beneficial for both SBN and DUNE physics programs
 - Measurement of both muon neutrino disappearance and electron neutrino appearance
 - Excellent opportunity to make inclusive *and* exclusive v_e channel measurements!

[R. Acciarri et al, Phys. Rev. D 95, 072005 (2017)]

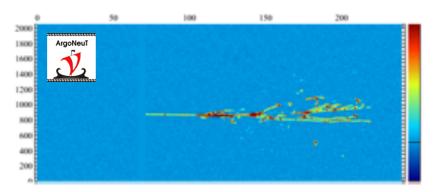

	1 month	1 year	3 years
CC v_e events	1,000	12,000	37,000


Rare channel searches

□ High precision measurements of rare channels!

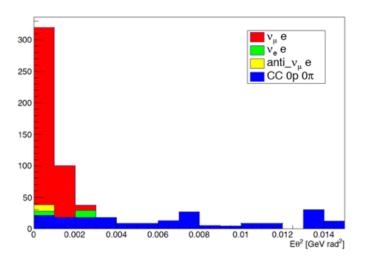
• Some previously unmeasured on Argon!

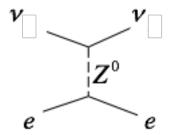
Charged Current Coherent Pion Expectations (GENIE estimate, rounded)


ORT-BAS

SBN

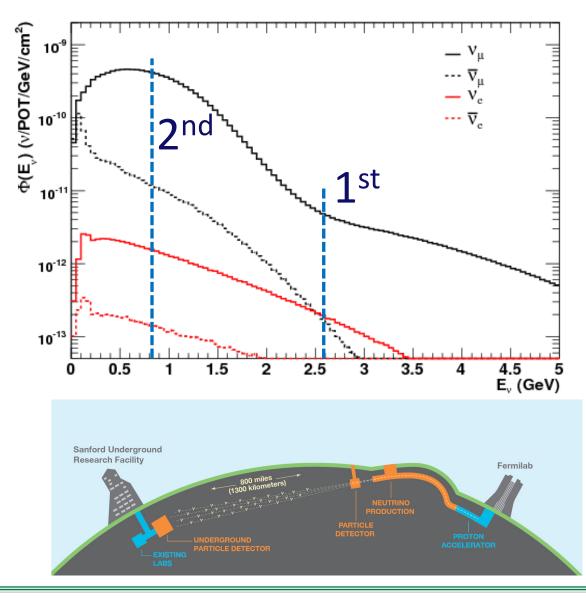
DET


Electron-neutrino scattering


Detector signature:

- Very forward electron
- No activity around vertex

Perfect position to make precision flux measurement


- High event rate
- Unoscillated signal
- Neutrino elastic scattering well known cross section

LAr TPC is ideally suited to this measurement

• 300 events expected

Relevance to DUNE

BNB flux covers neutrino energy at both 1st and 2nd oscillation peak for Deep Underground Neutrino Experiment

 High statistics measurement of neutrino interactions at 2nd oscillation peak energy



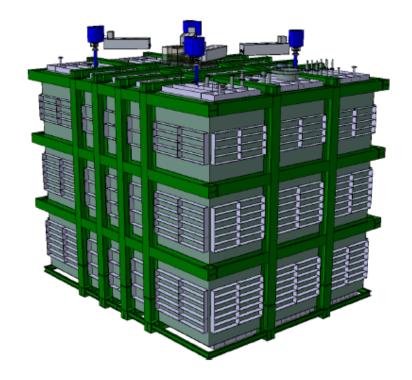
- SBND will contribute to the sterile neutrino search as a near detector for the SBN program, reducing systematic errors
- High statistics measurements of exclusive channels will lead to distinguish between nuclear models
 - Access to some unmeasured cross-sections on Argon
- Neutrino electron elastic scattering measurement will constrain the BNB flux
- Events at neutrino energy of DUNE 1st and 2nd oscillation maximum both measured at SBND
- □ SBND will have fully automated reconstruction
 - LArSoft framework (larsoft.org)
 - Used for physics simulation, detector response simulation, signal processing, hit reconstruction, pattern recognition, track and shower reconstruction, calorimetry
 - Development across collaborations: DUNE, MicroBooNE, LArIAT, ArgoNEUT

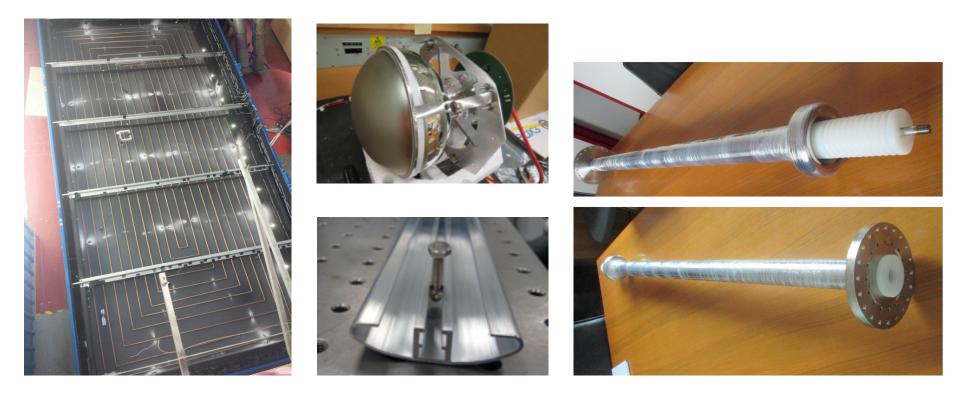
BASE SBND

□ The SBND detector is currently under construction!

- APA frames welded, machined and assembled to flatness of 0.5mm
- APA wiring of prototypes at advanced stages, final frame wiring to start imminently!
- CPA frames welded, mesh frames in production

SBND Current Status


□ SBND Building completed


Membrane Cryostat under design

- Concrete with metal beams
- 3rd generation prototype for DUNE

SBND Current Status

- High Voltage feedthrough prototypes in advanced stages
- □ Field cage components ready for testing and assembly
- □ Light collection system in production
- Detector cryogenic characterisation vessel commisioned

- Detector construction in progress!
- Software development synergies with other LAr experiments: use of LArSoft – mature development framework
- Detector assembly at Fermilab early 2018
- Detector insertion into cryostat late 2018
- Detector Commissioning early 2019
- □ First neutrino data with TPC mid 2019!

Analysis work already ongoing – neutrino data from just 1 month's running is significant!

- SBND is the near detector for the Short Baseline Neutrino program at Fermilab
 - It will measure the unoscillated BNB flux
 - Significant contribution to systematic error reduction for the SBN sterile neutrino searches
- SBND will measure v-Ar interactions with unprecedented precision due to excellent detector characteristics and high event rates
 - Transform our understanding of v-Ar interactions in the low energy range
 - Exclusive topologies
 - Rare channels
 - Input to nuclear modelling
- SBND is currently under construction, and will begin taking neutrino data in 2019!
 - Exciting times ahead!

Thanks from SBND

188 Collaborators from 35 institutions