Introduction	Comparisons	Tuning	CC 0 π tuning	Conclusion

GENIE models and global fits of neutrino scattering data

Marco Roda - mroda@liverpool.ac.uk on behalf of GENIE collaboration

27 September 2017 NUFACT 2017 Uppsala

Introduction	GENIE 00000	Comparisons 0000	Tuning OO	CC 0π tuning 000000000	Conclusion OO
Generators					
A.1	110.0				

Neutrino MC Generators: A Theory/Experiment Interface

- Access the flux distorsion due to oscillation
 - Every observable is a convolution of flux, interaction physics and detector effects
- Connect truth and observables
 - Event topologies and kinematics
 - Model dependencies
- Good Generators
 - ⇒ Support oscillation analyses
 - uncertainty validation
 - tune the physics models
- ⇒ Tuning proved to be difficult
 - So far no results

Several MC Generators in use: GENIE, GiBUU , NuWro, NEUT

Introduction	Comparisons	Tuning	CC 0 π tuning	Conclusion
0000				
Role of generators				

<ロト (個) (目) (目) (目) (149) (3/49)

Roles of MC generators in Oscillation Physics

- Comparing data and models
 - \Rightarrow You cannot study oscillations without fully understood models
 - Validity region
 - Highlight tensions
- Feedback for experiments
 - Drive the format of cross section releases
 - Hint toward key measurements

Introduction	Comparisons	Tuning	CC 0 π tuning	Conclusion
0000				
Role of generators				

Roles of MC generators in Oscillation Physics

- Comparing data and models
 - \Rightarrow You cannot study oscillations without fully understood models
 - Validity region
 - Highlight tensions
- Feedback for experiments
 - Drive the format of cross section releases
 - Hint toward key measurements
- Global fits
 - Generator is the ideal place for global fits
 - We control the model implementation
- Constraints on Cross Section for oscillation analysis
 - Neutrino Cross sections priors
 - Eventually based on data

What generators can do depends on the available datasets

Evaluing datage		teeste			
Dataset					
00000 000	000	0000	00	000000000	00
Introduction GEN		Comparisons	Tuning	$CC 0\pi$ tuning	Conclusion

Evolving datasets - Old datasets

- Functions of E_{ν}
- Not flux-integrated
- "Only" statistical errors

- Ignore nuclear effects
- Poor statistical interpretation
- Poor model discrimination power

Introduction	Comparisons	Tuning	CC 0 π tuning	Conclusion
00000				
Dataset				

Evolving datasets - Present datasets

- Functions of experimental observables
- flux-integrated
- Usually differential cross-sections
 - 1D, 2D
- Organized by topology, not process
- Higher statistics
- More statistically robust
 - ⇒ Fermilab Neutrino seminar by Mikael Kuusela - 2017/04/13

Introduction	Comparisons	Tuning	CC 0 π tuning	Conclusion
00000				
Dataset				

Evolving datasets - Present datasets

- Functions of experimental observables
- flux-integrated
- Usually differential cross-sections
 - 1D, 2D
- Organized by topology, not process
- Higher statistics
- More statistically robust
 - ⇒ Fermilab Neutrino seminar by Mikael Kuusela - 2017/04/13
- Sometimes incomplete
- Helped the development of new models
 - 2p/2h

Introduction	Comparisons	Tuning	CC 0 π tuning	Conclusion
00000				
Dataset				
-				

Future of datasets - a personal view

- One big covariance matrix per experiment
- Correlation between datasets
- Differential cross sections, dim > 2
- No data releases with this format
 - in SBND we are thinking about a solution
- It is usually a big effort but ...

We finally have a way to use these datsets

- Statistically coherent
- Complete error analysis

Introduction	GENIE	Comparisons	Tuning	CC 0 <i>π</i> tuning	Conclusion
	00000	0000	OO	000000000	00
GENIE - w	ww.genie-m	.org			

GENIE Collaboration

Luis Alvarez Ruso⁸, Costas Andreopoulos^{2,5}, Chris Barry², Francis Bench², Steve Dennis², Steve Dytman³, Hugh Gallagher⁷, Tomasz Golan^{1,4}, Robert Hatcher¹, Libo Jiang³, Rhiannon Jones², Anselmo Meregaglia⁶, Donna Naples³, Gabriel Perdue¹, Marco Roda², Jeremy Wolcott⁷, Julia Yarba¹

[Faculty, Postdocs, PhD students]

1 - Fermi National Accelerator Laboratory, 2 - University of Liverpool, 3 - University of Pittsburgh,

4 - University of Wroclaw, 5 - STFC Rutherford Appleton Laboratory, 6 - IPHC Strasbourg,

7 - Tufts University, 8 - Valencia University

Core GENIE mission

- ... provide a state-of-the-art neutrino MC generator for the world experimental neutrino community
- 2 ... simulate all processes for all neutrino species and nuclear targets, from MeV to PeV energy scales
- ... perform global fits to neutrino, charged-lepton and hadron scattering data and provide global neutrino interaction model tunes

	an 0 10 6	2					
GENIE status and prospect							
Introduction 00000	GENIE ●0000	Comparisons 0000	Tuning 00	CC 0π tuning 000000000	Conclusion OO		

- CCQE models
 - Llewellyn Smith
 - Nieves, Amaro and Valverde
- MEC models
 - Empirical
 - Nieves Simo Vacas
- Nuclear Models
 - Relativistic Fermi Gas
 - Local Fermi Gas
 - Effective Spectral Functions

- Single Kaon
- Λ production

- RES
 - Rein-Sehgal
 - Berger-Sehgal
 - Kuzmin-Lyubushkin-Naumov
- OH
 - Rein-Sehgal
 - Berger-Sehgal
 - Alvarez Ruso
- FSI Intranuke
 - Full Intra-Nuclear cascade
 - Schematic based on Hadron-nucleus data
- Only one Comprehensive Model Configuration (CMC)
- Default tune has not changed

Introduction	GENIE 0●000	Comparisons	Tuning OO	CC 0π tuning 000000000	Conclusion 00
GENIE status and pr	ospects				
GENIE Ve	ersion 3				

UNIVERSAL NEUTRINO GENERATOR & GLOBAL FIT

- "Comprehensive Model Configurations"
 - Self-consistent collections of primary process models
 - Tune names are supposed to become commonly used
 - Help cooperation between collaborations
 - single command-line flag
 - --tune G16_02a
 - Complete characterization against public data
 - Willing to host configuration provided by experiments
- Tunes for each CMC will also be available
- A step closer toward GENIE core mission

Introduction	GENIE	Comparisons	Tuning	CC 0 π tuning	Conclusion
	00000				
GENIE status and pr	rospects				

Comprehensive Model Configurations

Dedicated web page

List of available configurations

CMC definitions and charachterization

The following list contains the details of the CMCs available in GENIE. Also, for each CMC, validation plots and Tunigs are available.

Configuration Brief description

- G00_00a Historical Genie default configuration.
- G00_00b Historical Genie default configuration, including empirical 2p/2h.
- G16_01a Update of the historical default, including new interaction processes.
- G16_01b As G16_01a, with the inclusion of empirical 2p/2h.
- G16_02a Comprehensive configuration anchored to the latest theory developments.

Introduction	GENIE	Comparisons	Tuning	CC 0 π tuning	Conclusion				
	00000								
GENIE status and	GENIE status and prospects								

Comprehensive Model Configurations

Details and configuration

G16_02a

This configuration is based on the latest theorical developments. Particular emphasis is on Nieve Model for CC 0π and CC 1π interactions.

The configuration of this CMC is a bit tricky as not only the models has to be changed. So, please pay attention at the notes in the comments sections or at the end of the table.

Configuration Table			
ALGORITHM	MODEL	CONFIGURATION	COMMENTS
Initial Nucleus State	Local Fermi Gas	LocalFGM/Default	
CC QE	J. Nieves, J. E. Amaro and M. Valverde Phys. Rev. C 70 (2004)	NievesQELCCPXSec/Default	BBA05 elastic nucleon FF Dipole Axial Form Factor, M _A = 0.99 GeV/c ²
CC 2p/2h	J. Nieves, I. Ruiz Simo, and M. J. Vicente Vacas PRC 83 (2011) Implementation by J. Schwehr, D. Cherdack and R. Gran arXiv:1601.02038	NievesSimoVacasMECPXSec2016/Default	turn SetDiWucleonCode to false*
CC RES	Ch. Berger, L. M. Sehgal Phys. Rev. D76 (2007)	BergerSehgalRESPXSec2014/Default	dipole axial FF, M _A = 1.12 GeV/c ² 16 Resonances - No interference
CC DIS	E.A.Paschos and J.Y.Yu Phys. Rev. D65 (2002)	QPMDISPXSec/Default	Scaling factor = 1.032
CC COH Pion	Ch. Berger and L. M. Sehgal Phys. Rev. D 79 (2009)	BergerSehgalCOHPiPXSec2015/Default	
CC Diffractive Pion	D. Rein Nucl. Phys. B278 (1986) 61-77	ReinDFRPXSec/Default	
CC AS = 1 QE	A. Pais Annals Phys. 63 (1971) 361-392	PaisQELLambdaPXSec/Default	
CC ∆S = 1 Inelastic	M. Rafi Alam et at. Phys. Rev. D82 (2010) 033001	AlamSimoAtharVacasSKPXSec2014/Default	

Introduction	GENIE ○○○○●	Comparisons	Tuning 00	CC 0π tuning 000000000	Conclusion 00
Models					

Comprehensive Model Configurations

Configurations of interest for this talk

- G00_00a Default
 - No MEC
 - CCQE process is Llewellyn Smith Model
 - Dipole Axial Form Factor Depending on M_A = 0.99 GeV
 - Nuclear model: Fermi Gas Model Bodek, Ritchie
- G16_01b Default + MEC
 - with Empirical MEC
 - CCQE process is Llewellyn Smith Model
 - Dipole Axial Form Factor Depending on M_A = 0.99 GeV
 - Nuclear model: Fermi Gas Model Bodek, Ritchie
- G16_02a Nieves, Simo, Vacas Model
 - Theory motivated MEC
 - CCQE process is Nieves
 - Dipole Axial Form Factor Depending on M_A = 0.99 GeV
 - Nuclear model: Local Fermi Gas Model
- Small variations changing FSI models
- Variation including Spectral Functions

Introduction 00000	GENIE 00000	Comparisons ••••	Tuning OO	CC 0 π tuning	Conclusion OO
Comparisons					
The Comp	parisons				

The GENIE suite contains a package devoted to comparing GENIE predictions against publicly released datasets.

- Provides the opportunity to improve and develop GENIE models
- Crucial database for new GENIE global fit to neutrino scattering data

- All sorts of possible formats and dimensions
- Can store correlations, even between different datasets

Introduction		Comparisons	Tuning	CC 0 π tuning	Conclusion
00000	00000	0000	00	00000000	00
Comparisons					
The data	naco				

Modern Neutrino Cross Section measurement

- nuclear targets
- typically flux-integrated differential cross-sections
- MiniBooNE, T2K, MINERvA

Historical Neutrino Cross Section Measurement

- Bubble chamber experiment
- Measurements of neutrino-induced hadronic system characteristics
 - Forward/backward hadronic multiplicity distributions
 - Multiplicity correlations
 - ...
- Measurements of hadron-nucleon and hadron-nucleus event characteristics (for FSI tuning)
 - For pion, Kaons, nucleons and several nuclear targets
 - Spanning hadron kinetic energies from few tens MeV to few GeV

• Semi-inclusive electron scattering data

- electron-nucleus QE data
- electron-proton resonance data

Introduction	GENIE 00000	Comparisons 0000	Tuning OO	CC 0π tuning 000000000	Conclusion
CC 0 π datasets					
MiniBooN	E CCQE				

- $\bullet~ {\rm Both} ~\nu ~{\rm and} ~\bar{\nu}$
 - Phys. Rev. D81, 092005 (2010)
 - Phys. Rev. D88, 032001 (2013)
- Double differential cross section
- flux integrated
- No correlations
- Preferred model is Nieves Model (G16_02a)
 - excellent agreement for ν
 - $\chi^2 = 101/\bar{1}37 \text{ DoF}$
- worse for $\bar{\nu}$
 - $\chi^2 = 176/78 \text{ DoF}$

< ロ ト < 団 ト < 三 ト < 三 ト 三 三 の Q (* 15/49)</p>

Introduction 00000	GENIE 00000	Comparisons	Tuning OO	CC 0π tuning 000000000	Conclusion OO
CC 0 π datasets					
MiniBooN	IE CCQE				

- Both ν and $\bar{\nu}$
 - Phys. Rev. D81, 092005 (2010)
 - Phys. Rev. D88, 032001 (2013)
- Double differential cross section
- flux integrated
- No correlations
- Preferred model is Nieves Model (G16_02a)
 - excellent agreement for ν
 - $\chi^2 = 101/137 \text{ DoF}$
- $\bullet\,$ worse for $\bar{\nu}$
 - $\chi^2 = 176/78 \text{ DoF}$

< ロ ト < 回 ト < 三 ト < 三 ト 三 三 の Q (* 15/49)</p>

Introduction 00000	GENIE 00000	Comparisons	Tuning OO	CC 0π tuning 000000000	Conclusion 00
CC 0 π datasets					
T2K ND28	30 0 π				

- Double differential cross section
- flux integrated
- Fully correlated
- Tensions between datasets
- Preferred model is G16_01b
 - $\chi^2 = 135/67 \text{ DoF}$
- all models look reasonable "By eye" estimation
 - correlation is complicated
 - We can't ignore it!

Introduction	GENIE 00000	Comparisons	Tuning OO	CC 0π tuning 000000000	Conclusion OO
CC 0 π datasets					
T2K ND2	80 0 π				

- Double differential cross section
- flux integrated
- Fully correlated
- Tensions between datasets
- Preferred model is G16_01b
 - $\chi^2 = 135/67 \text{ DoF}$
- all models look reasonable "By eye" estimation
 - correlation is complicated
 - We can't ignore it!

Introduction	GENIE 00000	Comparisons 0000	Tuning	CC 0π tuning 000000000	Conclusion OO
Tuning					

< ロ ト < 団 ト < 三 ト < 三 ト 三 三 の < で 17/49</p>

- Why tuning?

 - Constraint parametersProvide specific tuning for experiments
 - Liquid Argon tuning
- Expected Output:

 - Best parametersParameter covariance matrix
 - To be used for prior constructions

Introduction	GENIE 00000	Comparisons 0000	Tuning	CC 0π tuning 000000000	Conclusion OO
Tuning					

< ロ ト < 団 ト < 三 ト < 三 ト 三 三 の < で 17/49</p>

- Why tuning?
 - Constraint parameters
 - Provide specific tuning for experiments
 - Liquid Argon tuning
- Expected Output:
 - Best parameters
 - Parameter covariance matrix
 - To be used for prior constructions
- Requirements granted by the comparisons:
 - Data
 - Metric
- Minimizer ?
 - Old problem in High Energy Physics
 - CPU demanding
 - Solution found in the Professor suite
 - http://professor.hepforge.org
 - Numerical assistant
 - Developed for ATLAS experiment

Introduction	GENIE 00000	Comparisons 0000	Tuning ●O	CC 0π tuning 000000000	Conclusion 00
Professor					
Professor					

• Parametrization instead of a full MC

Introduction	GENIE 00000	Comparisons 0000	Tuning ●O	CC 0π tuning 000000000	Conclusion
Professor					
Professor					

- Parametrization instead of a full MC
 - Select points of param space

<ロト < 回 ト < 三 ト < 三 ト 三 三 つ へ C・ 18/49

Introduction	GENIE 00000	Comparisons 0000	Tuning ●O	CC 0π tuning 000000000	Conclusion 00
Professor					
Professor					

- Parametrization instead of a full MC

 - Select points of param space
 Evaluate bin's behaviour with brute force

<ロト < 回 ト < 臣 ト < 臣 ト 王 国 の Q O 18/49

Introduction	GENIE 00000	Comparisons	Tuning ●O	CC 0 <i>π</i> tuning 000000000	Conclusion
Professor					
Professor					

- Parametrization instead of a full MC
 - Select points of param space
 - Evaluate bin's behaviour with brute force
 - Parametrization I(p)

<ロト < 回 ト < 臣 ト < 臣 ト 王 国 の Q O 18/49

Introduction	GENIE 00000	Comparisons 0000	Tuning ●O	CC 0 <i>π</i> tuning 000000000	Conclusion OO
Professor					
Professor					

- Parametrization instead of a full MC
 - Select points of param space
 - Evaluate bin's behaviour with brute force
 - Parametrization I(p)
 - Repeat for each bin
- a parameterization $I_j(p)$ for each bin
 - N dimension polynomial
 - Including all the correlation terms up to the order of the polynomial
- Minimize according to $\vec{l}(p)$
- $\bullet \sim 15$ parameters
- Special thanks to H. Schulz

<ロト 4 回 ト 4 三 ト 4 三 ト 三 三 の Q へ 18/49</p>

Introduction	GENIE 00000	Comparisons 0000	Tuning O●	CC 0π tuning 000000000	Conclusion 00
Professor					
Advantag	es				

- Highly parallelizable
 - independent from the minimization
- All kind of parameters can be tuned
 - Not only reweight-able

◆□▶ ◆□▶ ◆ E ▶ ◆ E ▶ E = のへで 19/49

Introduction	GENIE	Comparisons	Tuning	CC 0 m tuning	Conclusion
Professor	00000	0000	00	00000000	00
Advantage	s				

- Highly parallelizable
 - independent from the minimization
- All kind of parameters can be tuned
 - Not only reweight-able
- Advanced system
 - Take into account correlations
 - weights specific for each bin and/or dataset
 - Proper treatment while handling multiple datasets
 - Restrict the fit to particular subsets
 - Priors can be included
 - Avoid unphysical result
 - Nuisance rescaling parameters can be inserted
 - proper treatment for datasets without correlations (MiniBooNE)
- Reliable minimization algorithm
 - based on Minuit

(ロト (日) (三) (三) (三) (三) (19/49)

Introduction	GENIE 00000	Comparisons 0000	Tuning OO	CC 0 <i>π</i> tuning	Conclusion OO
The first tu	uning				

Tuning against CC 0π datasets

(ロ) (日) (日) (日) (日) (日) (100 - 20/49)

Introduction 00000	GENIE 00000	Comparisons	Tuning OO	CC 0 π tuning	Conclusion OO
Inputs					
Datasets -	311 data p	oints			

- MiniBooNE ν_{μ} CCQE
 - 2D histogram
 - 137 points
 - No correlation matrix
- MiniBooNE $\bar{\nu}_{\mu}$ CCQE
 - 2D histogram
 - 78 points
 - No correlation matrix
- T2K ND280 0π (2016) V2
 - 2D histogram
 - 80 points
 - full covariance matrix
- MINERvA ν_{μ} CCQE
 - 1D histogram
 - 8 points
 - full covariance matrix
- MINERvA $\bar{\nu}_{\mu}$ CCQE
 - 1D histogram
 - 8 points
 - full covariance matrix

 Missing Covariance between Neutrino and antineutrino data

◆□▶ ◆ @ ▶ ◆ 문 ▶ ◆ 문 ▶ 문 말 ♡ ९ ℃ 21/49

• Minerva released this information!

Models and parameters						
Inputs						
Introduction 00000	GENIE 00000	Comparisons 0000	Tuning OO	CC 0 π tuning	Conclusion OO	

- Default + Empirical MEC
 - G16_01b in naming scheme

- Full Nieves Model
 - G16_02a in naming scheme

◆□▶ ◆□▶ ◆ E ▶ ◆ E ▶ E = のへで 22/49

Introduction 00000	GENIE 00000	Comparisons	Tuning 00	CC 0 π tuning	Conclusion OO
Inputs					
Models a	nd paramete	rs			

- Default + Empirical MEC
 - G16_01b in naming scheme

- Full Nieves Model
 - G16_02a in naming scheme

◆□▶ ◆□▶ ◆ E ▶ ◆ E ▶ E = のへで 22/49

Parameter	Range	Default value
QEL-M _A (GeV/c ²)	[0.7;1.8]	0.99
QEL-CC-XSecScale	[0.8;1.2]	1
RES-CC-XSecScale	[0.5;1.5]	1
FSI-PionMFP-Scale	[0.6;1.4]	1
FSI-PionAbs-Scale	[0.4 ; 1.6]	1
MEC-FracCCQE - G16_01b only	[0;1]	0.45
MEC-CC-XSecScale - G16_02a only	[0.7; 1.3]	1

Introduction	GENIE	Comparisons	Tuning	CC 0π tuning	Conclusion
Inputs					
Models an	d paramete	rs			

- Default + Empirical MEC
 - G16_01b in naming scheme

- Full Nieves Model
 - G16_02a in naming scheme

Parameter	Range	Default value
QEL-M _A (GeV/c ²)	[0.7;1.8]	0.99
QEL-CC-XSecScale	[0.8;1.2]	1
RES-CC-XSecScale	[0.5;1.5]	1
FSI-PionMFP-Scale	[0.6;1.4]	1
FSI-PionAbs-Scale	[0.4 ; 1.6]	1
MEC-FracCCQE - G16_01b only	[0;1]	0.45
MEC-CC-XSecScale - G16_02a only	[0.7; 1.3]	1

• Other inputs:

- Nuisance scaling parameters 30 % for MiniBooNE Dataset
- Priors on QEL-CC-XSecScale and RES-CC-XSecScale
 - Gaussian with sigma 0.1

Introduction	GENIE 00000	Comparisons 0000	Tuning 00	CC 0 π tuning	Conclusion OO
Outputs					
Sheer res	sults				

G16_01b - Default + MEC

G16_02a - Full Nieves Model

Parameter	Best fit	Nominal	Parameter	Best fit	Nominal
$M_A (\text{GeV}/c^2)$	1.17 ± 0.03	0.99 ± 0.01	$M_A (\text{GeV}/c^2)$	1.00 ± 0.03	0.99 ± 0.01
QEL-CC-XSecScale	0.92 ± 0.02	1	QEL-CC-XSecScale	0.91 ± 0.02	1
RES-CC-XSecScale	1.02 ± 0.07	1	RES-CC-XSecScale	1.01 ± 0.04	1
MEC-FracCCQE	0.55 ± 0.06	0.45	MEC-CC-XSecScale	1.18 ± 0.02	1
FSI-PionMFP-Scale	0.86 ± 0.04	1.0 ± 0.2	FSI-PionMFP-Scale	1.17 ± 0.04	1.0 ± 0.2
FSI-PionAbs-Scale	0.76 ± 0.09	1.0 ± 0.3	FSI-PionAbs-Scale	1.02 ± 0.09	1.0 ± 0.3

- M_A is reasonably low
 - · Nieve's model is compatible with free nucleons fit
 - Precision of M_A reduced
 - ⇒ Our choice not to add a strong prior
- QEL reduced by $\sim 10\%$
- MEC increased by $\sim 20\%$
- FSI parameters strongly correlated
 - They are better constrained than the GENIE prior

Introduction	GENIE	Comparisons	Tuning	CC 0π tuning	Conclusion
	00000	0000	OO	○○○●○○○○○	OO
Agreement					

Agreement with respect to datasets

G16_01b - Default + MEC

G16_02a - Full Nieves Model

Dataset	Best fit χ^2	Nominal χ^2		Dataset	Best fit χ^2	Nominal χ^2
Miniboone ν_{μ} CC 0π	177 / 137	441 / 137	Minibo	one ν_{μ} CC 0π	89.3 / 137	101 / 137
MiniBooNE $\bar{\nu}_{\mu}$ CC 0π	66.2 / 78	50.4 / 78	MiniBoo	NE $\bar{\nu}_{\mu}$ CC 0π	48.1 / 78	176 / 78
T2K ND 280 CC 0 π	94 / 80	56.6 / 80	T2K	ND 280 CC 0π	102 / 80	98.9 / 80
Total	337 / 289	548 / 295		Total	239 / 289	376 / 295

- Improvement possible for both models
 - \Rightarrow The fit is working
- Fit driven by MiniBooNE datasets
 - Lowest information ⇒ No correlations
 - Room for improvement
- These T2K and Minerva datasets cannot be fit on their own
 - They cover a small phase space region
 - ⇒ Parameters goes to the boundaries

Introduction 00000	GENIE 00000	Comparisons 0000	Tuning OO	CC 0 <i>π</i> tuning ○○○○●○○○○	Conclusion 00
Best fit plots					
Best fit - G	a16_01b - N	liniBooNE $ u_{\mu}$ (CCQE		

Fit has a big impact

Introduction	GENIE 00000	Comparisons 0000	Tuning 00	CC 0 <i>π</i> tuning ○○○○○●○○○	Conclusion 00
Best fit plots					
Best fit - G16	_01b - Minil	BooNE $\bar{\nu}_{\mu}$ CCC	ΣE		

Improvement not really necessary in this case

26/49

B 1.00	010 011				
Best fit plots					
Introduction	GENIE 00000	Comparisons 0000	Tuning OO	CC 0π tuning	Conclusion OO

Best fit - G16_01b - MINERVA

Neutrinos

Antineutrinos

⇒ "Eye evaluation" wouldn't prefer a model over the other

▲□▶ ▲@▶ ▲ 분▶ ▲ 분▶ 분/ 분/ 원 ♀ 27/49

Best fit plots					
Introduction	GENIE	Comparisons	Tuning	CC 0 <i>π</i> tuning	Conclusion
00000	00000	0000	OO	○○○○○○○●○	OO

- agreement with T2K has worsened
- not surprising
- ⇒ Tensions already highlighted
- $\chi^{\rm 2} {:}~ {\rm 57} \rightarrow {\rm 94}$ / 80 DoF

Introduction	GENIE 00000	Comparisons 0000	Tuning OO	CC 0π tuning ○○○○○○○○●	Conclusion
Best fit plots					
Best fit - G16	6_02a				

- Nieves' model already works well
 - Agreement is preserved
- Notable improvement only w.r.t. MiniBooNE ν

 μ

Introduction	GENIE 00000	Comparisons 0000	Tuning 00	CC 0π tuning 000000000	Conclusion • O
Tuning program					
Next steps					

- More tunings can be done
 - hadronization retune
 - Pythia 6 and 8 (implementation is ongoing)
 - Tune of FSI
 - Both hN and hA intranuke
 - Free nucleon cross section model
 - including $d\sigma/dQ^2$ data

(ロ) (日) (日) (日) (日) (日) (10,00 - 30/49)

Introduction	GENIE 00000	Comparisons 0000	Tuning 00	CC 0π tuning 000000000	Conclusion • O
Tuning program					
Next steps					

- More tunings can be done
 - hadronization retune
 - Pythia 6 and 8 (implementation is ongoing)
 - Tune of FSI
 - Both hN and hA intranuke
 - Free nucleon cross section model
 - including $d\sigma/dQ^2$ data
- Data from Liquid argon experiments
 - Part of GENIE collaboration is in SBND
 - Plan for argon tunings
- Look forward to more data
- Release these results
 - Paper is in preparation
 - Implementation in GENIE v3

(ロト (個) (E) (E) (E) (E) (20/49)

Introduction 00000	GENIE 00000	Comparisons 0000	Tuning OO	CC 0π tuning 000000000	Conclusion ○●
Conclusions					
Conclusion					

- We are renewing GENIE
 - New models
 - Systematic validation against Cross section data
 - Maintained and rich database
- We have a very powerful fitting machinery
 - Validated
 - A new branch of analyses
 - Alternative tool to propagate systematic uncertainties
- What we can do depends on data quality
 - Look forward a promising collaboration between generators, experiments and theorists

JNIVERSAL NEUTRINO GENERATOR & GLOBAL FIT

Backup slides

Parametrization residuals

Data covariance

Data Covariance

• A simple ratio between Near and Far spectra is not enough

- Detectors exposed to different flux
- "functionally identical" detectors do not exists
- Near flux has to be fitted at the near detector and then propagated
 - ⇒ Models required

Backup

Model dependencies

Model dependencies

Model dependencies in Oscillation Analyses (2)

- CCQE is a 2-body reaction
 - *E_ν* depends is just a function of lepton momentum and angle
- 2p/2h is not a 2-body reaction
 - low energy tails in reconstructed energy distributions
- 2p/2h also relevant for CP searches
 - np-nh is different for $\nu/\bar{\nu}$
- ⇒ 2p/2h modelling is important to achieve required precision

$$E_{\nu} = \frac{m_{p}^{2} - (m_{n} - E_{b})^{2} - m_{\ell}^{2} + 2(m_{n} - E_{b})E_{\ell}}{2(m_{n} - E_{b} - E_{\ell} + p_{\ell}\cos\theta_{\ell})}$$

Model Comparisons

Model comparison

T2K collaboration: Abe et al. Phys. Rev. D 93 11012 (2016)

Model Comparisons

Model comparison

[M.Martini, FUNFACT J Lab workshop]

(ロト (個) (三) (三) (三) (三) (38/49)

Importance of Covariance

Importance of the covariance - an example

Importance of Covariance

Example of easy improvement

- Minerva experiment
- Cross sections of CC 1-proton on different targets
 - C, Fe, Pb
- Wonderful dataset
 - 2p/2h and FSI tuning
- Covariance matrices for each target
 - Best format among present data releases

arXiv:1705.03791v1

Importance of Covariance

Example of easy improvement

- Minerva experiment
- Cross sections of CC 1-proton on different targets
 - C, Fe, Pb
- Wonderful dataset
 - 2p/2h and FSI tuning
- Covariance matrices for each target
 - Best format among present data releases
- Not a full covariance matrix
 - Neglecting the same flux
 - Same detector/reconstruction
- We can check agreement
- we can not fit these data
 - without neglecting a correlation

arXiv:1705.03791v1

4 ロ ト 4 回 ト 4 王 ト 4 王 ト 王 王 9 40/49

0π puzzle

CC Quasi-Elastic - 0π on single nucleons

$$\frac{d\sigma^{\mathsf{QES}}}{dQ^2} = \frac{G_F^2 \cos^2\theta_C M^2 \kappa^2}{2\pi E_\nu^2} \left[A\left(q^2\right) + \left(\frac{s-u}{4M^2}\right) B\left(q^2\right) + \left(\frac{s-u}{4M^2}\right)^2 C\left(q^2\right) \right]$$

- Theoretically well understood
 - One diagram
- A, B and C are form factors
 - They have to be measured
 - B and C are known from e-N scattering
 - A to be extracted from ν data
- Axial Form factor
 - Dipole standard parameterization

•
$$A(Q^2) = g_A \left(1 + \frac{Q^2}{M_A^2}\right)^{-2}$$

• $g_A = 1.26$ from neutron β decay

(ロト (個) (三) (三) (三) (三) (41/49)

• fitted based on $\partial \sigma / \partial Q^2$ data

CC Quasi-Elastic - Data

- Hydrogen / Deuterium data
 - $\bullet~$ from 0.1 GeV to \sim 100 GeV
 - For both Neutrinos and Anti-neutrinos
- Critical parameter: MA
 - $M_A \sim 1 \text{ GeV}$

CC Quasi-Elastic - Data

- Hydrogen / Deuterium data
 - $\bullet~$ from 0.1 GeV to \sim 100 GeV
 - For both Neutrinos and Anti-neutrinos
- Critical parameter: MA
 - $M_A \sim 1 \text{ GeV}$

0π puzzle

0π on heavy nuclei

- On heavy nuclei things got complicated
- MiniBooNE \Rightarrow first evidence
 - Carbon target
- Possible explanation from enhanced M_A
 - \Rightarrow incompatibility with "historical" datasets

0π on heavy nuclei - Solution

- MoniBooNE is Cherenkov detector
 - Not able to see nucleons
- miniBooNE dataset is a CCQE-like sample
- genuine CCQE
- Multinucleon Emission
 - np-nh
 - Leading contribution is 2p-2h (2 particles - 2 holes)

0π puzzle

2 Particles - 2 Holes

Not easy to have a complete model Different approaches include different diagrams Data from comparisons

Hadronization example

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三国三 のへで 46/49

Data from comparisons

Hadronization example

Data from comparisons

Hadronization example

・ロト・日本・モート・モート モーモークへで 48/49

- Parameters best fit
- Parameters covariance
- Prediction covariance
 - due to the propagation of parameter covariance

- Parameters best fit
- Parameters covariance
- Prediction covariance
 - due to the propagation of parameter covariance

 Data Constraints for Oscillation analyses

- Parameters best fit
- Parameters covariance
- Prediction covariance
 - due to the propagation of parameter covariance

- Data Constraints for Oscillation analyses
 - Propagate the result to other observables

- Parameters best fit
- Parameters covariance
- Prediction covariance
 - due to the propagation of parameter covariance

- Data Constraints for Oscillation analyses
 - Propagate the result to other observables
- Propagate parameters uncertainty through the parameterization

<ロト < 回 ト < 臣 ト < 臣 ト 三 国 の Q @ 49/49