

19<sup>th</sup> International Workshop on Neutrinos from Accelerators

# Fully differential NLO predictions for rare and radiative lepton decays

Yannick Ulrich

#### Paul Scherrer Institut / Universität Zürich

 $29^{\text{th}}$  September 2017

Based on 1611.03617 and 1705.03782

Yannick Ulrich, 29.09.17 - p.1/13





#### Introduction

The radiative decay

Rare decay

Yannick Ulrich, 29.09.17 - p.2/13



- Radiative  $(\mu \to e\nu\bar{\nu} + \gamma)$  and rare  $(\mu \to \nu\bar{\nu} + e^+e^-)$  muon decays are a background to  $\mu \to e \gamma$  and  $\mu \to e e^+e^-$  searches.
- 4-Fermi interaction, fierzed at the Lagrangian

$$\mathcal{L} = \mathcal{L}_{\mathsf{QED}} + \frac{G_F}{\sqrt{2}} j_{V-A}(\mu, e) \cdot j_{V-A}(\nu_{\mu}, \nu_{e})$$

- Calculate decays at NLO fully differentially
- $\Rightarrow$  Arbitrary distributions with arbitrary cuts.



- $3.5\,\sigma$  discrepancy between BaBar measurement and branching ratio NLO calculation [Fael, Mercolli, Passera 2015]
- Unlikely due to large logarithms or uncomputed higher order corrections

Proposal:

- Experimental cuts are very restrictive and unfolding of acceptance is not trivial
- Correct fiducial acceptance by simulating full cuts of boosted system
- Effect is large! Reduces discrepancy to  $1.2\,\sigma$
- We **do not** claim that this is the full solution
- $\Rightarrow$  Fully differential NLO corrections are very important!



Yannick Ulrich, 29.09.17 - p.5/13

## Invisible energy spectrum at MEG



Universität Zürich





- $E_{\gamma} > 10 \,\mathrm{MeV}$  and  $\theta > 30^{\circ}$
- Our prediction  ${\cal B}_{\text{PSU}}=(4.26-0.04_{NLO})\cdot 10^{-3}$  agrees perfectly with  $_{\text{[Fael, Mercolli, Passera 2015]}}$
- 2006:  $\mathcal{B}_{2006}^{\pi\beta} = 4.40(9) \cdot 10^{-3}$  (cf.  $\mathcal{B}_{\text{theo}}^{\pi\beta} = 4.3 \cdot 10^{-3}$ )
- 2012:  $\mathcal{B}_{2012}^{\pi\beta} = 4.37(4) \cdot 10^{-3} \text{ (cf. } \mathcal{B}_{\text{theo}}^{\pi\beta} = 4.34 \cdot 10^{-3} \text{)}$
- Assuming  $m_e = 0$ :  $\mathcal{B}_{\mathsf{PSU}}^{m_e=0} = (4.35_{\mathrm{LO}} + 0.06_{\mathrm{NLO}}) \cdot 10^{-3}$

## **Global comparison:** $\mathcal{B}(10 \text{ MeV})$

- Relate all data using NLO Monte Carlo to  $E_{\gamma} > 10 \,\mathrm{MeV}$
- Compute kinematic acceptance  $\epsilon$

$$\mathcal{B}(10 \,\mathrm{MeV}) = \underbrace{\frac{\mathcal{B}_{\mathsf{PSU}}(10 \,\mathrm{MeV})}{\mathcal{B}_{\mathsf{PSU}}(\mathsf{exp. cuts})}}_{\epsilon} \mathcal{B}_{\mathsf{exp}}(\mathsf{exp. cuts})$$

•  $\epsilon_{\text{MEG}} \approx 2 \cdot 10^5$ ,  $\epsilon_{\pi\beta} \approx 3$ 

Universität

• Combined experimental  $\bar{\mathcal{B}}(10\,{\rm MeV}) = 1.27(1)\cdot 10^{-2}$  (1 $\sigma$  above theory)





- $4_{\rm Born} + 40_{\rm 1-loop} + 20_{\rm real}$  diagrams up to pentagons
- Good parametrisation of phase space very important
- Approximate Mu3e cuts 
  $$\begin{split} E_{e^{\pm}} &> 10 \text{ MeV}, \\ &|\cos \sphericalangle(\boldsymbol{p}_{e^{\pm}}, \boldsymbol{e}_z)| < 0.8 \end{split}$$



#### Invisible energy spectrum at Mu3e



Universität Zürich<sup>®®</sup>



**BSM** potential in  $\mu \rightarrow e\nu\bar{\nu} + e^+e^-$ 

• Very preliminary!

$$\mathcal{A}(\mu \to e\nu\bar{\nu} + e^+e^-) = \left| \begin{array}{c} \gamma_{\mu^+} & \overline{V}_{e^+} \\ \mu^{\mu^+} & \overline{V}_{\bar{\nu}_{\mu}} \\ \mu^{\mu^+} & \overline{V}_{\bar{\nu}_{\mu}} \end{array} + \left| \begin{array}{c} \chi_{\mu^+} & \overline{V}_{e^+} \\ \chi_{\mu^+} & \overline{V}_{\bar{\nu}_{\mu}} \\ \chi_{\mu^+} & \overline{V}_{\bar{\nu}_{\mu}} \end{array} \right|^2$$

 $\Rightarrow$  Looking for light new mediators

- Can New Physics be extracted from precise measurement of shapes in rare muon decay?
- NNLO uncertainties are likely to be very small.

## **BSM potential in** $\mu \rightarrow e\nu\bar{\nu} + e^+e^-$

- Distributions for the hard  $e^+$ , soft  $e^+$  and  $e^-$ 

Universität

Zürich

•  $K \approx 0.98 \Rightarrow$  shape very precise (small NNLO)







- Fully differential NLO prediction are available for both  $\ell \rightarrow l \nu \bar{\nu} + \gamma$  and  $\ell \rightarrow l \nu \bar{\nu} + l^+ l^-$
- Radiative corrections can be extremely important when unfolding fiducial acceptance to 'PDG values'
- There is some confusion ( $\pi\beta$ , BaBar, treatment of 2<sup>nd</sup> photon)
- MEG & Mu3e: Corrections are negative, normally small (percent level) but can reach  $\mathcal{O}(10\%)$