Status of the Hyper-Kamiokande Experiment

Erin O'Sullivan, on behalf of the Hyper-Kamiokande proto-collaboration Stockholm University NuFACT 2017

Hyper-Kamiokande collaboration

Proto-collaboration formed in 2015

~ 300 members from 14 countries (71 institutes)

Hyper-Kamiokande detector

Two 74m (D) x 60m (H) tanks Total (fiducial) volume of two tanks: 516 kT (374 kT). We are prioritizing the quick realization of the first tank, with a second tank to follow. Unless indicated, all plots in this talk show sensitivity with one tank.

Hyper-Kamiokande detector

The generated charged particle emits the Cherenkov light.

Muon: sharp ring

Electron: fuzzy ring

Hyper-Kamiokande site

Detector will be located at the Tochibora Mine site

8 km south of SK

Overburden of 1,750 mwe

HK phototube development

Covers to protect against pressure are being developed

Multi-PMT option (adapted from KM3NeT design) being explored

HK construction timeline

Data taking expected in 2026

J-PARC neutrino Beam (Tokai)

Building off the successful T2K program, Hyper-K also plans to measure neutrinos from the J-PARC neutrino beam

J-PARC beam – Planned upgrade

Plans to upgrade main ring would increase J-PARC beam power to ~1.3MW

Upgrades will mean 3x more beam power by 2026 (in time for Hyper-K)

T2K-II Protons-On-Target Request

See Mathieu Lamoureaux's talk tomorrow in the WG1+WG2 session at 11:30

Near Detector – Planned upgrade

See Cris Vilea's talk tomorrow in the WG1+WG2 session at 11:30

1 kton E61 Intermediate Detector

Hyper-Kamiokande Physics Goals

Solar neutrinos

CP violation

Astrophysical neutrinos

Proton decay

See Christophe Bronner's talk today in the WG1 session at 14:48

Neutrino oscillation parameters

High precision oscillation parameter measurement:

 $\delta(\sin^2\theta_{23}) \sim 0.006 \text{ (for } \sin^2\theta_{23}=0.45)$ $\delta(\sin^2\theta_{23}) \sim 0.015 \text{ (for } \sin^2\theta_{23}=0.50)$

 $\delta(\Delta m_{32}^2) \sim 1.4 \times 10^{-5} eV^2$

Octant determination: Using accelerator neutrinos

CP violation measurement

Looking for differences in the oscillation behaviour between neutrinos and anti-neutrinos

Antineutrino mode: appearance

CP violation measurement: Using accelerator neutrinos

After 10 years of running, HK will be able to measure ~50% of the δ_{CP} space to better than 5σ

Mass hierarchy

Depending on θ_{23} , mass hierarchy can be determined with $\sqrt{\Delta \chi^2}$ between 4 and 6

Octant determination: Adding atmospheric neutrinos

For $\sin^2\theta_{23}=0.45$: beam alone ~4 σ , atmospheric alone ~2 σ , beam+atmospheric ~5-6 σ

CP violation measurement: Resolving parameter degeneracies by adding atmospheric neutrinos

Nucleon decay

	Mode	Sensitivity (90% CL) [years]	Current limit [years]
	$p \to e^+ \pi^0$	7.8×10^{34}	1.6×10^{34}
Flagship nucleon decay modes:	$p\to \overline{\nu}K^+$	$3.2 imes 10^{34}$	$0.7{ imes}10^{34}$
p →e ⁺ π^0	$p \to \mu^+ \pi^0$	7.7×10^{34}	0.77×10^{34}
	$p \to e^+ \eta^0$	4.3×10^{34}	1.0×10^{34}
Positron Proton	$p \to \mu^+ \eta^0$	4.9×10^{34}	$0.47{ imes}10^{34}$
	$p \to e^+ \rho^0$	0.63×10^{34}	0.07×10^{34}
	$p \to \mu^+ \rho^0$	0.22×10^{34}	0.06×10^{34}
	$p \to e^+ \omega^0$	0.86×10^{34}	0.16×10^{34}
gamma	$p \to \mu^+ \omega^0$	1.3×10^{34}	0.28×10^{34}
p →v K ⁺	$n \to e^+ \pi^-$	2.0×10^{34}	0.53×10^{34}
V	$n \to \mu^+ \pi^-$	1.8×10^{34}	0.35×10^{34}
μ+ /K+	Limits	s will be improve	d across all
236 MeV/c	1	1 1 1	1

Limits will be improved across all nucleon decay channels, some by an order of magnitude. 22

Solar neutrinos

Vacuum oscillation dominated Matter oscillation dominated

Hyper-K can measure the solar upturn to $\sim 5\sigma$ (3 σ) after 10 years with 3.5 MeV (4.5 MeV) threshold

Solar neutrinos

Measuring the hep neutrino

Small energy region above ⁸B neutrinos

Good energy resolution and high statistics means Hyper-K will have sensitivity to hep solar neutrinos

Supernova neutrinos

What would a galactic (10kpc) supernova look like in Hyper-K?

Supernova neutrinos

Livermore, 10 MeV threshold, expectation range from oscillation effects

See arXiv:1611.06118 [hep-ex]

HK-K

Exploring option of putting second HK tank in Korea

Putting the second detector at the second oscillation maximum means our signal has a different shape →makes us less sensitive to systematic errors ²⁷

The second detector in Korea allows us to better measure the CP-phase, compared with both detectors in Japan

HK Status

- In summer 2017, HK was listed as a top project on the Ministry of Education, Culture, Sports, Science and Technology (MEXT) roadmap with the highest possible rating of (a,a)
- A budget request to the Japanese funding agency has been submitted
- Many opportunities for new collaborators to make an impact please join us!

Summary

- Hyper-K will be a world-leading water Cherenkov experiment
- Good prospects for detecting CP-violation, oscillation parameters, and mass hierarchy with accelerator and atmospheric neutrinos
- Non-accelerator physics goals include nucleon decay and astrophysical neutrinos
- Placing the second HK tank in Korea could enhance our sensitivity to our physics goals, including CP-violation.