Beam Delivery for the Fermilab Mu2e Experiment

> Kevin Lynch For the Mu2e Collaboration

NUFACT 2017 Uppsala University Uppsala, Sweden September 25-30, 2017

Mu2e is a search for charged lepton flavor violation with *discovery potential*

Although it has never been observed, we know that cLFV **must** occur, *even in the Standard Model*, through neutrino loop effects.

Mu2e is a search for charged lepton flavor violation with *discovery potential*

Although it has never been observed, we know that cLFV **must** occur, *even in the Standard Model*, through neutrino loop effects.

However, the predicted SM rates are unobservably small: $Br(\mu \to e\gamma) = \frac{3\alpha}{32\pi} \left| \sum_{k=2,3} U_{\mu k}^* U_{ek} \frac{\Delta m_{1k}^2}{M_W^2} \right|^2 < 10^{-54}$

First, the bad news: we'll never observe this!

First, the bad news: we'll never observe this!

Now, the good news: we'll never observe this!

First, the bad news: we'll never observe this!

Now, the good news: we'll never observe this!

Any signal of CLFV is unambiguous evidence for physics beyond the Standard Model!

There are three powerful signatures of CLFV in the muon sector

Mu2e and COMET will search for Coherent Conversion $\mu^{-}A(Z,N) \rightarrow e^{-}A(Z,N)$ Two-body $\mu^{-} e^{-}$ The Mu2e apparatus separates the production of muons and our observations of their decays

The production solenoid produces a backward beam to further reduce prompt backgrounds

The transport solenoid sign selects charged particles

Graded to reflect electrons toward the tracker

14

secondary beam

The calorimeter is a two layer, annular crystal calorimeter

If there is new weak scale physics, Mu2e is in an excellent position to observe cLFV

For a 3 year run with 3.6x10²⁰ POT, we expect a nearly background free signal:

Category	Background process	Estimated yield
		(events)
Intrinsic	Muon decay-in-orbit (DIO)	0.199 ± 0.092
	Muon capture (RMC)	$0.000^{+0.004}_{-0.000}$
Late Arriving	Pion capture (RPC)	0.023 ± 0.006
	Muon decay-in-flight (µ-DIF)	< 0.003
	Pion decay-in-flight (π -DIF)	$0.001 \pm < 0.001$
	Beam electrons	0.003 ± 0.001
Miscellaneous	Antiproton induced	0.047 ± 0.024
	Cosmic ray induced	0.092 ± 0.020
	Total	0.37 ± 0.10

If there is new weak scale physics, Mu2e is in an excellent position to observe cLFV

For a 3 year run with 3.6x10²⁰ POT, we expect a nearly background free signal:

Category	Background process	Estimated yield
		(events)
Intrinsic	Muon decay-in-orbit (DIO)	0.199 ± 0.092
	Muon capture (RMC)	$0.000^{+0.004}_{-0.000}$
Late Arriving	Pion capture (RPC)	0.023 ± 0.006
	Muon decay-in-flight (µ-DIF)	< 0.003
	Pion decay-in-flight (π -DIF)	$0.001 \pm < 0.001$
	Beam electrons	0.003 ± 0.001
Miscellaneous	Antiproton induced	0.047 ± 0.024
	Cosmic ray induced	0.092 ± 0.020
	Total	0.37 ± 0.10

The single event sensitivity goal is 2.5×10^{-17} ; our current estimate is 2.9×10^{-17}

If there is new weak scale physics, Mu2e is in an excellent position to observe cLFV

For a 3 year run with 3.6x10²⁰ POT, we expect a nearly background free signal:

Category	Background process	Estimated yield
		(events)
Intrinsic	Muon decay-in-orbit (DIO)	0.199 ± 0.092
	Muon capture (RMC)	$0.000 {}^{+0.004}_{-0.000}$
Late Arriving	Pion capture (RPC)	0.023 ± 0.006
	Muon decay-in-flight (µ-DIF)	< 0.003
	Pion decay-in-flight (π -DIF)	$0.001 \pm < 0.001$
	Beam electrons	0.003 ± 0.001
Miscellaneous	Antiproton induced	0.047 ± 0.024
	Cosmic ray induced	0.092 ± 0.020
	Total	0.37 ± 0.10

The single event sensitivity goal is 2.5×10^{-17} ; our current estimate is 2.9×10^{-17}

We'll see a signal of 50 or more events for models that predict conversion at the 10⁻¹⁵ level

The Fermilab complex simultaneously drives both the Neutrino and Muon Campus programs

The Muon Campus program is run with 8 GeV protons

Proton beam requirements

	Parameter	Design Value	Requirement	Unit
	Total protons on target	4.7×10 ²⁰	≥ 4.7×10 ²⁰	protons
	Time between beam pulses	1695	> 864	nsec
	Maximum variation in pulse separation	< 1	10	nsec
	Spill duration	43.1	> 20	msec
	Beamline Transmission Window	230	< 250	nsec
	Transmission Window Jitter (rms)	< 5	<10	nsec
	Out-of-time extinction factor	1.6×10 ⁻¹²	≤ 10 ⁻¹⁰	
	Average proton intensity per pulse	3.9×10 ⁷	< 5.0×10 ⁷	protons/ pulse
	Maximum Pulse to Pulse intensity variation	50	50	%
	Target rms spot size	1	0.5 - 1.5	mm
	Target rms beam divergence	0.5	< 4.0	mrad

Beam Size

26

Resonant extraction slow spills protons from the DR and sends them to the Mu2e Production Target

Delivery Ring manipulations

 Quadrupoles drive a 1/3 integer resonance (29/3) in the horizontal tune
 Sextupoles induce a controlled beam instability
 Septum peels off a microbunch on each turn
 Dynamic spill regulation control via an RFKO system
 Full extraction over ~32,000 turns

Delivery Ring orbital period (1695 ns) is nearly an ideal match for muon lifetime in Al

Extracted beam exits the DR in a tunnel shared by Mu2e and g-2

Extracted beam exits the DR in a tunnel shared by Mu2e and g-2

AV302 M4 (lower) and M5 (upper) beamlines as the exit the Delivery Ring enclosure.

An AC Dipole extinction system significantly reduces out-of-time beam

Extinction performance should exceed requirements

Simulation Results

Fraction of DR extracted beam outside of ±125 ns:	2.1×10 ⁻⁵
In-time beam transmission:	99.5%
Beam line extinction:	<5×10 ⁻⁸
Total extinction:	1.1×10 ⁻¹²
Extinction Requirement:	<1.0×10 ⁻¹⁰

Our margin should be greater than 2 orders of magnitude

The pion production target is a radiatively cooled tungsten rod

The pion production target is a radiatively cooled tungsten rod

- 16 cm x 6.3 mm tungsten cylinder
- 1700 C surface temperature
- Oxidative erosion is a significant aging concern
- Primary design, prototyping, validation, and production being done at RAL
- There is a significant remote handling system being designed at FNAL

Accelerator Status and Schedule

M5

Four Phases:

- 1. Muon Campus startup for g-2 (Spring 2017)
 - Temporary Shielding labyrinth and gate allow M4 installation during beam ops.
 - Installation upstream of shielding during accelerator shutdowns
 - This is the present configuration
- 2. M4 Commission to DA (Summer 2020)
 - Temporary shielding removed (gate remains)
 - Shielding installed at Diagnostic Absorber
 - Single turn 8 GeV protons extraction to DA with g-2 kicker
- 3. Resonant Extraction: commission to DA (>Early 2021)
 - ESS installed at D30 (requires removal of g-2 extraction kicker) – Off Project
- 4. Resonant Extraction to target Off Project

Diagnostic Absorber (DA) Final Forther Shielding NA Beamine Installation of components necessary for single turn extraction is a Threshold KPP

> Delivery of protons to the DA is an Objective KPP

Delivery Ring

M4/M5

Temp. Shielding & Gate

g-2

Some very recent progress has included mounting magnets in the M4 line ...

M4 beamline (left) and beamline to the diagnostic absorber (right). Picture was taken with photographer's back to the diagnostic absorber.

... and prototyping of various components

Prototype AC Dipole being pumped down

In summary

Mu2e is on track to either unambiguously discover CLFV or push the limit on muon conversion by four orders of magnitude in the next decade.

For more information
Mu2e Homepage: http://mu2e.fnal.gov
Technical Design Report: http://arxiv.org/abs/1501.05241

Contact: Doug Glenzinski, *douglasg@fnal.gov*, or Jim Miller, *miller@bu.edu*.