

The 19th International Workshop on Neutrinos from Accelerators (NUFACT2017)

25-30 September 2017 Uppsala University Main Building Europe/Stockholm timezone

Search for charged lepton flavour violation processes & heavy neutrinos at CMS

Barbara Clerbaux Université Libre de Bruxelles (ULB) For the CMS Collaboration

Introduction

In SM : Lepton Number/Lepton Flavor are not related to a gauge symmetry

- In 1998 : Observation of flavor neutrino oscillations → prove neutral LFV Massive neutrinos → go beyond the minimal SM (BSM physics) however: neutrinos masses << other (charged) fermion masses
- Key questions :
 - → What is the mechanism at the origin of the neutrino mass ?
 - What about charged LFV ?
 - Do heavy right-handed neutrinos exist?

Neutrino-induced lepton flavor violation for charged leptons is expected to be very small [e.g., $Br(\mu \rightarrow e\gamma) \sim 10^{-50}$]

Many news physics models can enhance this decay
Example : RPV SUSY, Extra-dim, GUT, models with Majorana N etc
→ good probe for new physics

- A natural way to generate LNV and neutrino mass :
- Seesaw Mechanism (type I, II, III)
- Left-Right Symmetry model offers the Seesaw scale and heavy neutrinos $SU(2)_L \otimes SU(2)_R \otimes U(1)_{B-L}$ $M_{W_R} \gg M_{W_L}$

The LHC

CMS Integrated Luminosity, pp

run1 & run2

Analyses presented in this talk use : 2012 : 8 TeV, 23 fb⁻¹ 2015 : 13 TeV, 4 fb⁻¹ 2016 : 13 TeV, 40 fb⁻¹ (LHC delivered luminosity)

The CMS detector

High precision multipurpose detectors

Particle identification: electrons, muons, photons, charged hadrons, neutral hadrons

LFV searches @CMS : outline

- Lepton flavour violation in Z decays
- Lepton flavour violation in H decays
- LFV of heavy state $X \rightarrow e\mu$
- Search for heavy neutrinos :
 - Type I seesaw and Left-Right SM
 - Type III seesaw

Low energy results (e.g., $\mu \rightarrow e\gamma$, $\mu \rightarrow eee$, $\tau \rightarrow \mu\gamma$, etc.) provide constraints (but often with assumptions)

LFV in Z decays

LFV in Z decays : $Z \rightarrow e\mu$

- From one-loop decay with flavor-oscillating neutrinos : Predicts LFV in Z decay, Br(Z→eµ)<10⁻⁶⁰
- In BSM scenarios : Br(Z→eµ) can be enhanced to 10⁻⁸ or 10⁻⁹ ex : Models with massive Dirac or Majorana neutrinos, extended gauge models, or RPV SUSY arXiv:hep-ph/0010193
- Indirect constraint from low energy experiment : µ→3e: Br(Z→eµ) < 5x10⁻¹³ worth to check if this hold at high energy
- Limit from LEP : Br(Z→eµ) < 1.7x10⁻⁶ @95% CL

LFV in Z decays : $Z \rightarrow e\mu$

2012 data analysis (8 TeV, 19.7 fb⁻¹)

Search for a bump around the Z mass in the invariant e-µ mass spectrum >

Main backgrounds: $Z \rightarrow \tau \tau$, W+W-, top-quark pair production, tW, WZ, ZZ, Z+jets and W+jets Strong event selection to reduce the backgrounds : isolated e and μ , opposite charge, third lepton veto, jet veto, transverse mass (muon) veto, $p_T(Z) < 10$ GeV

Count events in window around the Z

- Background prediction of 83 ± 9
- Events found in data: 87
- Use CLS method to determine limit

Limits @95% CL : Br($Z \rightarrow e\mu$) < 7.3 10⁻⁷ (Observed) 6.7 10⁻⁷ (Expected)

CMS-PAS-EXO-13-005

Better limit than LEP

LFV in Higgs decays

LFV in Higgs decays

 LFV couplings to the Higgs possible, e.g., if SM only valid to finite scale For example in 2 Higgs Doublet models (2HDM), extra-dimension models, compositness models.
 arXiv:1209.1397

LFV Higgs couplings would allow processes like : $\mu \rightarrow e, \tau \rightarrow \mu$ and $\tau \rightarrow e$ via a virtual Higgs boson

 Strong constraint: from searches for µ→eγ Br(H→eµ) < O(10⁻⁸) @ 95% CL

Weaker limits on Br(H \rightarrow e/µ τ) < O(10%) @ 95% CL from searches for $\tau \rightarrow$ e/µ γ and µ/e g-2 measurements

 \rightarrow direct search for $H \rightarrow e\tau$ and $H \rightarrow \mu\tau$: promising

History of $H \rightarrow \mu \tau$ channel @CMS

Search for $H \rightarrow \mu \tau$, 2 channels: $\mu \tau(e)$ and $\mu \tau(h)$, and 3 categories: 0,1,2 jets

2012 data analysis (8 TeV, 19.7 fb⁻¹)

A small (2.4 sigmas) excess Br(H→μτ) <1.51% (0.75% expected) Br(H→eτ) <0.69% Br(H→eµ) <0.035% PLB763C (2016) 472

2015 data analysis (13 TeV, 2.3 fb⁻¹)

Br($H \rightarrow \mu \tau$)<1.20% (1.62% expected): not yet at the Run1 sensitivity

11

$H \rightarrow \mu \tau$ & $H \rightarrow e \tau$ channels

UPDATE : 2016 dataset (13 TeV, 35.9 fb⁻¹) Number of channels : $\mu \tau(e)$ & $\mu \tau(h)$ and $e \tau(\mu)$ & $e \tau(h)$ Number of categories : 0, 1, 2 & VBF

Very similar signatures as the SM $H \rightarrow \tau \tau$ but with significant kinematic differences The e(µ) in the LFV $H \rightarrow e(\mu)\tau$ decay produced promptly \rightarrow larger momentum than in the SM $H \rightarrow \tau(e/\mu) \tau(h)$

Analysis strategy :

-Loose selection+BDT analysis-fit: a set of 8 kinematics variables is combined into a Boost Decision Tree (BDT) $(p_{T1},p_{T2},Mcol,Et(miss),M_T(\tau(h)), \Delta\eta(l_1, l_2), and 2 \Delta \Phi cuts)$ -Mcol-fit analysis as cross check (cut based analysis)

Background estimation : using data driven technique (control regions) $Z \rightarrow \tau\tau$, $Z \rightarrow \mu\mu$, $Z \rightarrow ee$, also W+jets, multijet bg from QCD (fake leptons) tt+jet, $H \rightarrow \tau\tau$, diboson (using simulations)

Collinear mass : estimate of Higgs mass using the observed decay of H + collinear approximation $(M_H^{>>}M\tau) \rightarrow \tau$ are boosted

 \rightarrow suppose neutrinos direction = visible decay products of the τ

CMS PAS HIG-17-001 To be submitted to JHEP

Collinear mass distribution

13

NEW

BDT output disctribution

14

VEW

Results : $H \rightarrow \mu \tau \& H \rightarrow e \tau$

BDT-fit analysis results for the 8 categories :

Br($H \rightarrow \mu \tau$) <0.25% (0.25% exp.)

Br(H→eτ) <0.61% (0.37% exp.)

→ Clear improvements compared to results from 2012 and 2015 data analyses The 2.4 sigmas excess (Run1) is now excluded by the 2016 data analyses

Results : $H \rightarrow \mu \tau \& H \rightarrow e \tau$

Upper limits on the off-diagonal $\mu\tau$ and $e\tau$ Yukawa couplings: From BDT method :

	M_{col} -fit	BDT-fit
$\sqrt{ Y_{\mu au} ^2+ Y_{ au\mu} ^2}$	$< 2.05 imes 10^{-3}$	$< 1.43 imes 10^{-3}$
$\sqrt{ Y_{\mathrm{e}\tau} ^2 + Y_{\mathrm{\tau}\mathrm{e}} ^2}$	$< 2.45 imes 10^{-3}$	$< 2.26 \times 10^{-3}$

LFV decay of heavy states $X \rightarrow e\mu$

Selection cuts and background

2012 data analysis (8 TeV, 19.7 fb⁻¹) \rightarrow EPJC 76 (2016) 317 2015 data analysis (13 TeV, 2.7 fb⁻¹) \rightarrow CMS-PAS-EXO-16-001 2016 data analysis \rightarrow in preparation

```
Analysis strategy : inclusive search
Single-\mu trigger
e : p_T > 53 GeV, |\eta| < 2.4
\mu : p_T > 35 GeV, |\eta| < 2.5
```

 \rightarrow eµ invariant mass spectrum:

- No further criteria to remain model independent
- Main backgrounds: top-quark pairs and W⁺W⁻
- Interpretation in 2 BSM models :
 - R-parity violating SUSY
 - Extra-dimension model Quantum Black Hole

Interpretation in RPV SUSY

• SUSY allows superpotential : Violate R-parity, R = $(-1)^{3(B-L)+2S}$ λ and λ ' terms violate lepton N and F λ " terms violate baryon number Limits on proton decay mean either λ and λ ' are 0 or λ " terms are 0

• **R-parity violating SUSY with** τ sneutrino as LSP:

LSP can decay into eµ or dd via couplings λ₁₃₂, λ₂₃₁ or λ'₃₁₁ Suppose λ₁₃₂ = λ₂₃₁
from µ→e conversion experiments: |λ₁₃₂ λ'₃₁₁| < 4.1 10⁻⁹ · (M/100 GeV)²

CMS limits @95% CL : 2015 : M < 1.0 (3.3) TeV for $\lambda_{132} = \lambda'_{311} = 0.01$ (0.2)

2012 : M < 1.28 (2.30) TeV @ 95% CL for $\lambda_{132} = \lambda'_{311} = 0.01$ ($\lambda_{132} = 0.07$, $\lambda'_{311} = 0.11$)

Upper limits & model interpretation

 R-parity violating SUSY with τ sneutrino as LSP :

Limit in the plane (λ'_{311} , M) \rightarrow

Quantum black holes :

- Spin-0, colorless & neutral QBH with LFV considered
- Cross section depends on threshold mass and number of extra dimensions n

CMS limits @95% CL : 2015 : M < 2.50 - 4.50 TeV for n=1-6

2012 : M < 2.36 - 3.63 TeV for n=1-6 20

Search for heavy neutrinos and right-handed W

Search for heavy N @CMS

• Search for the "Type I Seesaw" mechanism : Resonant production via s-channel W* or W(real) probe light-heavy mixing Majorana neutrino: 50% same-sign Cross section depends on $|V_{lN}|^2$ and m_N Signal : 2 SS leptons (e or μ) + 2jets + no MET SS = same sign

Search for Left-Right SM (LRSM):
 Search for a resonance W_R production
 Signal : 2 leptons (e or μ) + 2jets + no MET (no sign requirement)

→ Same final state as type I But different kinematics

Two jets from W decay : m(jj) = m(W)

LRSM searches @8 TeV

Update - Searches at 13 TeV

2015 data analysis (13 TeV, 2.7 fb⁻¹) Search for a heavy right-handed N_l and a heavy W_R In the LRSM model 2 isolated leptons (no charge requirement) Lepton $p_T > 60$, 53 GeV, M(ll) > 200 GeV N jets \ge 2, $p_T > 40$ GeV, M(lljj) > 600 GeV

Di-muon channel

Di-electron channel

For the signal shown : M(W_R)=3 TeV M(N_l) = ½M(W_R)

Main backgrounds: tt and DY+jets

Update - Searches at 13 TeV

Di-electron channel

1000 1500 2000 2500

3000 3500

M_{Wp} [GeV]

CMS PAS EXO-16-045

Upper limits on cross section as a function of the W_R mass For $M(N_l) = \frac{1}{2}M(W_R)$

M(W_R) > 3.5(3.3) TeV in the µµjj (eejj) channel

2D mass exclusion limits in the M(W_R), M(N_l) plane

Searches at 13 TeV

Submitted to PLB CMS PAS EXO-16-026

Test a recently proposed model : Heavy composite Majorana neutrino (HCMN) Final state : llqq' 2 same flavor leptons and 2 jets

Di-muon channel $p_T(\mu)>53$, 30 GeV

Di-electron channel p_T(e): 110, 35 GeV

Upper limits at 95% CL on the cross section*Br Exclude A Composite Majorana Neutrino of mass up to 4.50 (μ), 4.35 (e) TeV

Searches in the **TT** channel

CMS PAS EXO-16-023

- A 2.8 o excess in eejj channel but no excess in dimuon channel
- JHEP 07 (2017) 121

- \rightarrow Searches in $\tau\tau$:
- All hadronic channel: $\tau_h \tau_h$, using 2.1 fb⁻¹ at 13 TeV The largest branching ratio, but large QCD bg from fake taus
- Lepton+hadronic channel: τ(e)τ_h, τ(μ)τ_h, use 2016 data: 12.9 fb⁻¹
 Clean events, but with a small branching ratio

No excess in data, exclude W_R up to 2.9 TeV 27

Discriminant variable : scalar sum of charged pt + Missing pt \rightarrow L_T + MET

2016 data analysis (13 TeV, 35.9 fb⁻¹) Search for type-III seesaw heavy fermions signal in multilepton final states : 3 or 4 electrons or muons

Different production and decay of $\Sigma^0 \Sigma^{\pm}$ and $\Sigma^+ \Sigma^$ are considered via s-channel W* Suppose Σ^0 and Σ^{\pm} degenerate in mass

6 event categories :

N _{leptons}	OSSF & mass	Variable	$p_{\rm T}^{\rm miss}$ requirement
3	OSSF1, on-Z	$M_{ m T}$	$p_{\rm T}^{\rm miss} > 100 { m GeV}$
3	OSSF1, above-Z OSSF1, below-Z OSSF0	$L_{\rm T} + p_{\rm T}^{\rm miss}$ $L_{\rm T} + p_{\rm T}^{\rm miss}$ $L_{\rm T} + p_{\rm T}^{\rm miss}$	$p_{\rm T}^{\rm miss} > 50 {\rm GeV}$
≥ 4	OSSF1 OSSF2	$L_{\rm T} + p_{\rm T}^{\rm miss}$ $L_{\rm T} + p_{\rm T}^{\rm miss}$	$p_{\rm T}^{\rm miss} > 50 {\rm GeV}$ if on-Z

CMS PAS EXO-17-006 Submitted to PRL

Type III seesaw mechanism

28

1200

1000 $L_T + p_T^{miss}$ (GeV)

Irreducible bg from WZ and ZZ processes Reducible bg from Z+jets, tt+jets (fake-leptons)

N(l) > = 4, OSSF1 35.9 fb⁻¹ (13 TeV) 10⁵ Events / 150 GeV Data CMS Misidentified 35.9 fb⁻¹ (13 TeV) WZ 10⁴ 10⁵ Conversion Events / 150 GeV E Data ZZ CMS ΖZ 10³ Rare Rare 10⁴ Uncertainty Misidentified Σ₃₈₀ Conversion 10² 10³ Uncertainty $\Sigma_{380} \\ \Sigma_{700}$ 10 10² I LINE 1 10 10^{-1} 1 Obs/Exp 2 1.5 10⁻¹ 0.5 2 1.5 Obs/Exp 0 800 0 200 400 600 1000 1200 $L_{T}\text{+}p_{\tau}^{miss}~(GeV)$ 0.5 0

0

200

400

600

800

 L_T +MET distributions for two signal regions :

Type III seesaw mechanism

N(l)=3, OSSF1, above-Z

CMS PAS EXO-17-006 Submitted to PRL

Type III seesaw mechanism

The 95% CL upper limits on the cross section for production of heavy fermion pairs:

Theo. prediction : in the flavor-democratic scenario

CMS PAS EXO-17-006

Submitted to PRL

Limits :

 In the lepton-flavor democratic scenario (Be=Bµ=Bτ): heavy fermion pair production is excluded for masses below 840 GeV (780 GeV expected)

35.9 fb⁻¹ (13 TeV)

- In the $\tau\tau$ -phobic case (B τ =0,Be+B μ =1) the mass limits range from 900 to 930 GeV

Summary

- Neutrinos oscillations provide interest for various BSM searches @LHC : searches for charged LFV and searches for heavy neutrinos
- Test various models that try to explain the small v mass
- Previous excess in H decay and LRSM searches : not confirmed with new data

Results Reported on: (highlights on updates using the 2016 dataset)

- Prospects:
 - Some of the analysis of the 2016 dataset: to be released soon
 - more data to come to perform precision measurements Run2 (2015-2018) and Run3 (2021-2023): about 120 and 300 fb⁻¹ expected HL-LHC (2026-2036): about 3000 fb⁻¹ expected Challenge : higher pileup (tracking, isolation, ...)