Lepton Physics at LHCb

Preema Pais EPFL

On behalf of the LHCb Collaboration

NuFact 2017 May 26, 2017 University of Uppsala

PHYSICS WITH LEPTONS AT LHCb

+ Diverse physics program with leptonic and semi-leptonic final states

Many recent results - will only cover a few in this talk!

Single-arm spectrometer instrumented in the forward (2 < η <5) region

Trigger system:

Initial hardware trigger (L0), using information from calorimeters and muon system

Software trigger split into two stages: fast partial event reconstruction + subsequent full reco.

Low luminosity \implies can trigger on relatively low pT objects

- + 3 fb⁻¹ collected in Run 1
 - Dataset used for all analyses shown today
- + Run 2 dataset (to date) ~2.8 fb⁻¹

LEPTON FLAVOUR UNIVERSALITY

- In the Standard Model, couplings of leptons to gauge bosons are independent of the lepton flavor
- Violation of LFU would be a clear sign of New Physics
- Semi-leptonic decays:
 - Decay rate can be factorized (weak and strong); theoretically simplified
 - Study ratio of branching fractions to cancel theoretical hadronic uncertainties
- At LHCb, measurements performed for both tree-level and loop-level processes

$R(D^*)$

 $R(D^{(*)}) = \frac{\mathcal{B}(B \to D^{(*)}\tau\nu)}{\mathcal{B}(B \to D^{(*)}\ell\nu)}$

- Search for LFU in $b \rightarrow clv$ decays
- Tree-level processes; can exploit large statistics to include studies with the tauonic mode
 - Sensitive to NP models favouring third lepton generation (eg. charged Higgs)
- (Precise) SM prediction = 0.252 ± 0.003 (PRD 85 (2012) 094025)
- LHCb measurements with two tau decay modes:
 - Leptonic tau decays (τ→μνν) PRL 115, 111803 (2015)
 - Hadronic tau decays (τ→πππ) LHCB-PAPER-2017-017

$R(D^*)$

- Measurement performed with muonic tau decay
 - Experimentally very challenging! (multiple v in the final state)
- Main backgrounds from B→D**Iv and B→D*H_c(→Iv)X decays; reject using isolation BDT
- Perform a 3D template fit using variables that discriminate between tauonic and muonic decays modes:
 - $q^2 = |p_B p_{D^*}|^2$
 - E_µ*
 - $m^2_{miss} = |p_B p_D^* p_\mu|^2$

2.1 σ away from SM prediction

 $\mathcal{R}(D^*) = 0.336 \pm 0.027 \,(\text{stat}) \pm 0.030 \,(\text{syst})$

PV V

PRL 115, 111803 (2015)

 $R(D^*)$

- Final state w/ three-prong hadronic tau decay: $\tau^+ \rightarrow \pi^+ \pi^- \pi^+ (\pi^0)_V$ LHCB-PAPER-2017-017
- Method:
 - First measure K(D*)

$$\mathsf{K}(D^*) \equiv \frac{Br(B^0 \to D^{*-}\tau^+\nu_{\tau})}{Br(B^0 \to D^{*-}3\pi)} = \frac{N_D^*\tau\nu_{\tau}}{N_D^*\pi} \times \frac{\varepsilon_D^*\pi}{\varepsilon_D^*\tau\nu_{\tau}} \times \frac{1}{Br(\tau^+ \to 3\pi(\pi^0)\overline{\nu}_{\tau})}$$

- Normalisation channel has same visible final state - systematic uncertainties cancel
- Compute ratio with muonic mode $R(D^*) = K(D^*) \times \frac{Br(B^0 \to D^{*-} 3\pi)}{Br(B^0 \to D^{*-} \mu^+ \nu_{\mu})}$
- Three charged pions allow for good tau vertex reconstruction
- However, have to contend with large background from B→D*3πX (~O(100) times signal)
- Require τ decay vertex displaced from B vertex (along the beam direction) - background suppressed by ~3 orders of magnitude

 \bar{D}^0

 $\Delta z > 4\sigma_{\star}$

D

 B^{0}

PV

р

 $B^0 \rightarrow D^{*-} \tau^+$

R(D*)

- B→D*D_sX background (~O(10) times signal) controlled using data-driven techniques
- Relative yield of various contributions constrained by fit to $D3\pi$ invariant mass
- Perform a 3D template fit using BDT response, q^2 and τ decay time

LHCB-PAPER-2017-017

 $m(D^{*}\pi^{+}\pi^{-}\pi^{+})$ [MeV/ c^{2}]

 $\mathcal{R}(D^{*-}) = 0.285 \pm 0.019 \,(ext{stat}) \pm 0.025 \,(ext{syst}) \pm 0.013 \,(ext{ext})$

 $\mathcal{B}(B^0 \to D^{*-} \tau^+ \nu_{\tau}) = (1.39 \pm 0.09 \,(\text{stat}) \pm 0.12 \,(\text{syst}) \pm 0.06 \,(\text{ext})) \times 10^{-2}$

COMBINATION

 $R(D^*)$ LHCb average = 0.306 ± 0.027 (2.1 σ from SM)

HFLAV R(D^{*}) combination = 0.304 ± 0.015 (3.4 σ from SM)

b→sll TRANSITIONS

- 'Flavour-changing neutral current' (FCNC) transitions
- Proceed via electroweak loops; suppressed in the SM
- New particles could also contribute at loop level

Potential effects observed via:

- Differential branching fraction measurements, analyses of angular distributions
- Tests of lepton flavor universality

DESCRIBING FCNC PROCESSES

Effective Hamiltonian described by an operator product expansion

Operators (O_i) - long-distance effects (non-perturbative)

Wilson coefficients (Ci) - perturbative, short-distance physics

i=1, 2	Tree
i=3-6, 8	Gluon penguin
i=7	Photon penguin
i=9, 10	Electroweak penguin
i=S	Higgs (scalar) penguin
i=P	Pseudoscalar penguin

different regions of q² probe different processes

ANOMALIES IN $b \rightarrow sll BF$ MEASUREMENTS

Consistent pattern of deviations from SM predictions

Are discrepancies hints of NP, or due to unaccounted-for charm loop contributions?

- Ratios of B→hll decays (with light lepton flavours) are clean probes of NP
 - Hadronic uncertainties cancel
- Analysis performed with B⁰→K^{*0}II decays (where K^{*}(892)⁰→K⁺π⁻) in two bins of invariant mass squared

$$R_{\mathrm{K}^{*0}}\left[q_{\mathrm{min}}^{2}, q_{\mathrm{max}}^{2}\right] = \frac{\int_{q_{\mathrm{min}}^{2}}^{q_{\mathrm{max}}^{2}} \mathrm{d}q^{2} \frac{\mathrm{d}\Gamma(B^{0} \to K^{*0}\mu^{+}\mu^{-})}{\mathrm{d}q^{2}}}{\int_{q_{\mathrm{min}}^{2}}^{q_{\mathrm{max}}^{2}} \mathrm{d}q^{2} \frac{\mathrm{d}\Gamma(B^{0} \to K^{*0}e^{+}e^{-})}{\mathrm{d}q^{2}}}$$

• Double ratio with $B^0 \rightarrow K^{*0}J/\psi$ reduces systematic uncertainties

$$R_{K^{*0}} = \frac{\mathcal{B}(B^0 \to K^{*0} \mu^+ \mu^-)}{\mathcal{B}(B^0 \to K^{*0} J/\psi(\to \mu^+ \mu^-))} / \frac{\mathcal{B}(B^0 \to K^{*0} e^+ e^-)}{\mathcal{B}(B^0 \to K^{*0} J/\psi(\to e^+ e^-))}$$

 However, extremely challenging due to differences in trigger/reconstruction for electrons and muons

- Electron reconstruction challenging due to bremsstrahlung; momentum and mass resolution degraded
- Recover by adding ECAL clusters to extrapolated upstream electron track
 - Limited by calorimeter acceptance, energy threshold $(E_T > 75 \text{ MeV})$
- Worse B mass resolution in the electron channel -
- J/ ψ backgrounds leak into signal region

JHEP 08 (2017) 055

JHEP 08 (2017) 055

Analysis strategy:

- Keep selection as similar as possible for electron, muon channels
 - Multivariate classifier to reject combinatorial background
 - Veto for peaking backgrounds
- Signal efficiencies determined from MC, tuned with data
- Normalisation channel used to correct signal mass shapes

- Hardware trigger ET thresholds are higher for electrons than for muons (higher occupancy in the calorimeter compared to the muon spectrometer)
 - Analysis performed for three exclusive trigger categories (TIS = trigger independent of signal)

Yields obtained from fit to the invariant mass

JHEP 08 (2017) 055

• Precision dominated by statistics in electron channel

R(K*)

JHEP 08 (2017) 055

$$R_{K^{*0}} = \begin{cases} 0.66^{+0.11}_{-0.07} \text{ (stat)} \pm 0.03 \text{ (syst)} & \text{for } 0.045 < q^2 < 1.1 \text{ GeV}^2 c^4 \\ 0.69^{+0.11}_{-0.07} \text{ (stat)} \pm 0.05 \text{ (syst)} & \text{for } 1.1 & < q^2 < 6.0 \text{ GeV}^2 c^4 \end{cases}$$

- Compatible with the SM at 2.1 σ 2.3 σ (2.4 σ 2.5 σ) in the low (central) q² bin
- Measurement is statistically dominated

R(K)

• Analysis performed with 3 fb⁻¹ of data

$$R_{K} = \frac{\int \frac{d\Gamma(B^+ \rightarrow K^+ \mu^+ \mu^-)}{dq^2} dq^2}{\int \frac{d\Gamma(B^+ \rightarrow K^+ e^+ e^-)}{dq^2} dq^2}$$

- Signal in q² range [1,6] GeV²/c⁴
- \bullet R(K) value compatible with SM at 2.6 σ

PRL 113 (2014) 151601

GLOBAL FITS

Results from $b \rightarrow sll$, $b \rightarrow ll$ and $b \rightarrow s\gamma$ transitions interpreted by global fits to Wilson coefficients

- Includes ~100 observables from multiple experiments
- All fits require additional (non-SM) contribution

1.5

1.0

0.5

0.0

-0.5

-1.0

-2.0

flavio v0.21

-1.5

-1.0

-0.5

 ${
m Re}\, C_9^e$

- NP in C₉-C₁₀ favoured at \sim 3.5 σ from R(K^(*)) • results considered alone
- Adding in other results, C_9 favoured at ~5 σ

arXiV:1704.05435

0.0

 $\operatorname{Re} C_{0}^{\mu}$

all

0.5

1.0

LFV IN $D^0 \rightarrow e^{\pm}\mu^{\mp}$ DECAYS

PLB 754 (2016) 167

- Search for tagged D^{*+}→D⁰(→e[±]μ[∓])π⁺ decays using 3fb-1 of Run 1 data
- Normalisation channel: $D^0 \rightarrow K^{\pm} \pi^{\mp}$
- Primary background from misidentification of $D^0 \rightarrow \pi^+\pi^-$ decays
- Two-dimensional fit in m(eµ), Δm(D^{*+}-D⁰) performed
- Limits set in absence of signal:

 $\mathcal{B}(D^0 \to e\mu) < 1.3 \times 10^{-8} @ 90\% \text{ CL}$ $\mathcal{B}(B^0 \to e\mu) < 2.8 \times 10^{-9} @ 90\% \text{ CL}$ $\mathcal{B}(B_s \to e\mu) < 1.1 \times 10^{-9} @ 90\% \text{ CL}$

LFV IN $B^0 \rightarrow e^{\pm}\mu^{\mp}$ DECAYS

- Search for B⁰→e[±]µ[∓] and B^s→e[±]µ[∓] decays using 3fb⁻¹ of Run 1 data
- Normalisation using $B^+ \rightarrow J/\psi K^+$ (clean final state) and $B^0 \rightarrow K^+\pi^-$ (similar topology to signal)
- Primary (peaking) background from misidentification of B⁰ → h⁺h'⁻ decays with both hadrons misidentified
- Fit to eµ invariant mass distribution yielded no excess
- Limits (world's best) set using the CLs method:

$$\mathcal{B}(B^0 \to e^{\pm} \mu^{\mp}) < 1.0 (1.3) \times 10^{-9}$$
$$\mathcal{B}(B^0_s \to e^{\pm} \mu^{\mp}) < 5.4 (6.3) \times 10^{-9}$$

LFV in $\tau^+ \rightarrow \mu^+ \mu^- \mu^+$ Decays

- Search for τ⁺→μ⁺μ⁻μ⁺ decays using 3fb⁻¹ of Run 1 data
- Normalisation:

$$\mathcal{B}(\tau^- \to \mu^- \mu^+ \mu^-) = \mathcal{B}(D_s^- \to \phi(\to \mu\mu)\pi) \times \frac{f_\tau^{D_s}}{\mathcal{B}(D_s^- \to \tau\bar{\nu}_\tau)} \times \frac{\varepsilon_{cal}}{\varepsilon_{sig}} \times \frac{N_{sig}}{N_{cal}}$$

- Relatively clean final state
- Build three-dimensional likelihood using:
 - MVA based on PID
 - MVA based on topological variables
 - candidate invariant mass
- No signal observed; limits set on BR:

 $\mathcal{B}(\tau \to \mu \mu \mu) < 4.6 \times 10^{-8} @ 90\% \text{ CL}$

SEARCH FOR LONG-LIVED SCALAR PARTICLES

- Search for long-lived $\chi \rightarrow \mu^{-}\mu^{+}$
 - Can be produced in b→s transitions via mixing with Higgs
- Detector signature: Narrow peak in di-muon invariant mass in B⁺→K⁺µ⁻µ⁺ decays
- Normalize to $B^+ \rightarrow J/\psi K^+$ decays
- 95% CL set on branching fraction in absence of signal
 - Large amount of parameter space excluded in inflaton model

PRD 95, 071101 (2017)

SEMILEPTONIC DECAYS OF LONG-LIVED PARTICLES

- Search for decays of long-lived mSUGRA neutralino to a muon and two quarks
- Detector signature: muon + multi-track displaced vertex
- Event selection:
 - Vertex w/ \ge 4 tracks, significantly displaced from the IP associated to muon w/ pT > 12 GeV)
 - Veto on vertices in detector material regions
 - MVA (Multi-layer perceptron) to refine selection

Eur.Phys.J. C (2017) 77:224

- Main backgrounds: bb decays (also W, Z decays)
- Fit LLP candidate mass with signal + background PDF
 - Simultaneous background fit on data-based control sample (selected using muon isolation variable)

SEMILEPTONIC DECAYS OF LONG-LIVED PARTICLES

Eur.Phys.J. C (2017) 77:224

- No significant excess observed in 3fb⁻¹ of data
- Results interpreted in terms of models with different production mechanisms

SUMMARY

- Wide variety of measurements and searches performed with the Run 1 LHCb dataset
 - No direct evidence of NP (yet) from a single measurement/ search
 - Consistent anomalies seen in LFU measurements, and BF measurements, angular analyses of b→sll transitions
- LHCb Run 2 dataset collected in 2015-2016 doubles the existing statistics
 - + First analyses ready, more results to come soon!

