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THE TOKAI-TO- KAMIOKA (T2K) EXPERIMENT
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PROPOSED EXTENDED RUN OF T2K (T2K-I)
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HYPER KAMIOKANDE PROJECT
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MEASURING NEUTRINO ENERGY

4 ~

®* Model assumptions play important role in inferring neutrino energy Genuine CCQE (1p-1h)
from detected neutrino-nucleus interaction products. Qu N’

®
® In Super-K charged lepton kinematics are measured and CCQE — “{;\ﬁ"ﬂ‘ @

. \Y
dynamics are assumed. \_ N Y,

® Multi-nucleon contributions to CCQE cross-section can bias E, significantly. 7~ T ticles-two holes (2 2h)—\
WO particles-two haoles \£p-

® Large uncertainties from final state and secondary interaction models. Ql_, N (N
® Calorimetric measurements suffer from similar model dependence. vf\g\d‘b __ @9
-+
®* For example, through uncertainties in the multiplicity of (undetected) V ®
neutrons. \ N N J

T. Katori, M. Martini, arXiv:1611.07770
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L M. Martini et al, arXiv:1211.152
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NEAR DETECTOR CONSTRAINTS

® Neutrino flux is different in far detector compared to near detector:
neutrinos oscillate!

<10° Multinucleon Feed-down, ND280 Flux 1 03 Multinucleon Feed-down on Oscillated Flux
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® This presents an additional difficulty in constraining neutrino interaction
models.

®* We only ever measure a combination of flux and cross-section.

® Multi-nucleon effects can smear reconstructed neutrino energy into
oscillation dip at far detector, biasing the measurement.

® But this is obscured by the flux peak at the near detector!
C. Vilela NUFACT 2017 September 29, 2017



THE E61 DETECTOR

® An intermediate water Cherenkov detector on the
J-PARC beam path.

® Instrumented portion of the detector is moveable
within a deep pit.

® Sample neutrino interactions from a wide range of off-
axis angles.

®* Optically separated inner and outer detector
volumes.

® Inner detector 6 — 10 m tall and 8 m diameter.
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® Quter detector 10 — 14 m tall and 10 m diameter.
® Populated with multi-PMT modoules.

®* Aim to load water with Gadolinium.

® Precise measurements of neutron emission in neutrino

interactions.
C. Vilela NUFACT 2017
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COMBINING OFF- AXIS SAMPLES
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PSEUDO-MONOCHROMATIC BEAMS

® Single muon candidate events after off-axis coefficients are applied to give
monochromatic flux centered at 1.2 GeV.

Gaussian Fit
Fit Mean: 1.14 GeV
Fit RMS: 0.21 GeV

% zmo I | I ! I ! I ! I ! I | I ! I ! _
> —— 1 Ring p Event Spectrum -
< i
1500 Absolute Flux Error ]
o .
= —— Shape Flux Error ]
U i
= Statistical Error n
= 1000 -

E, (GeV)

21500

2
-

Events/50 M

500

—— 1 Ring p Event Spectrum
Absolute Flux Error
—— Shape Flux Error

Statistical Error
—— NEUTQE
—— NEUT Non-QE

Reconstructed E,

assuming CCQE
PSS DU ST

1 5 3

E,. (GeV)

® Measure cross-sections as a function of true neutrino energy.

®* Q? and w available — detailed neutrino measurements a la electron scattering.

® Powerful probe of interaction models, such as departures from CCQE due to

multinucleon effects.

C. Vilela NUFACT 2017
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MULTI-PMT MODULES

®* The E61 baseline design has the detector populated with multi-PMT modules.

® Modules contain 3" PMTs facing both the inner and outer detector volumes.
® Aluminium reflectors give an effective increase in photosensor area of ~20%.

® Modules contain integrated HV and read-out electronics.

® Expected Physics benefits:
® Improved time resolution: particularly important for resolving inter-bunch pileup.

® Finer granularity allows Cherenkov rings to be imaged with a better resolution:
expected reconstruction improvements.

® Reflectors and PMT orientation might provide additional directional information.

® Extensive R&D programme with significant international collaboration:
® Photosensor testing and characterization.

®* Development of integrated electronics.

® Optical testing of materials: acrylic, silicon gel, ...

® Mechanical modelling and prototyping.

plastic cover

C. Vilela NUFACT 2017 September 29, 2017



E61 SIMULATION AND RECONSTRUCTION

®* Complete and reconstruction chain has

been developed for E61.

® In use for physics and detector optimization studies

FE G ER B
'.,' ¢ & i : L g & e L

®* The Geant4-based package is used for K& ETTTYETT
simulation. TETEELT

it sl A
> -

® Highly configurable water Cherenkov detector
geometries, several PMT models available.

n of‘electron

Simulatio

particle:gun eventin:E6 ]

® Recently implemented multi-PMT modules. populated. with mPMTs

~1500-
T E ® Reconstruction with fiTQun.
- - N ®* Maximum likelihood estimation of
L Electron/Muon track parameters using all the
ORI separation in information in an event.
?ﬁm" F61 populated ® Hit/unhit, time and charge
500 — i ot with 8”7 PMTs ! ge.
- ® Developed and deployed at Super-K,
~1oE now dlso running on WCSim output.

|||I|||I| |I|| I|||I|||I|||I|||I|| I||| H -
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E61 DETECTOR OPTIMIZATION STUDIES

®* Complete simulation and reconstruction chain using WCSim and fiTQun is
being actively used in detector optimization studies.

e efficiency of u rejection cut e efficiency of n° rejection cut
1 ————r e 1
n_a :_ ................................................................................................................................................ n_a :_ ..........................................................................................................................................
G_E __ ................................................................................................................................................ G_E __ ...........................................................................................................................................
04 When u miss ID rate is 0.5% ' 04" WhenmwmissDrawisse 0 o
i Super-Kamiokande i Super-Kamiokande
0.2/~ 10x6m detector with evenly spaced 20inch PMT 0.2~ 10x8m detector with evenly spaced 8inch PMT
i ——e——— 10%6m detector with evenly spaced 3inch PMT |« &x8m detector with evenly spaced 8inch PMT
% 200 400 600 800 1000 % 200 400 600 800 1000
Momentum [MeV/c] Momentum [MeV/c]

® Study major detector parameters such as overall dimensions, photosensor size
and density, mPMT module configuration.

®* Parameters are optimized as a function of detector performance:

® Electron / muon separation; electron / 0 separation, detection efficiencies, ...

C. Vilela NUFACT 2017 September 29, 2017 13



EVENT SELECTION

Event selection developed using
complete chain of simulation and
reconstruction.

® Single-ring, p-like and fully contained
events.

® Shown here for detector populated
with 8" PMTs.

Disappearance analysis using E61
simulated /reconstructed events in
progress.
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Flux/em?. 100 MEV - 1821 POT]

v, DISAPPEARANCE WITH EG]1

® Take linear combinations of off-axis binned data to reproduce the far detector

oscillated neutrino flux.

® Use the corresponding observables to make a prediction for the far detector

data with little model dependence.

® Background, flux and acceptance corrections necessary for SK prediction.

® Significant uncertainty cancellation in neutral-current background subtraction.

® In oscillation dip region prediction is dominated by E61 data.
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E61 DATA-DRIVEN

* Disappearance analysis using off-
axis angles combinations is shown
to be robust against interaction

mismodelling.
1. Produce fake data with throws
of flux and cross-section

uncertainties both with and

without multi-nucleon effects.

2. Fit the fake data using
interaction model without multi-

nucleon contributions.

® E61 significantly reduces

uncertainty and removes bias.

® This is a data-driven constraint,

independent of model choice.

C. Vilela NUFACT 2017
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. Neutron
Anti-electron

GADOLINIUM LOADING ™€ o~

Gadolinium
®* Program to load Super-K water with Gadolinium is now /l\b\sitron Gamma rays
well established.
® Required tank liner refurbishment work planned for 2018. / e II'
* Aside from IBD, Gd will be useful for higher energy
Physics at Super-K: — v CCQE
-, CCQE
* Statistical separation of v/anti-v interactions in the GENIE
atmospheric samples, as well as wrong-sign background NEUT
reduction in beam samples.
* Significant background reduction for proton decay searches.
®* However, large uncertainties on neutron multiplicity
lead to background uncertainties on the above. e

Neutron momentum [GeV]

®* Near detector measurements with Gd critical for the 39000
precise use of neutron capture information. 30000} Default
25000 HPCapture
® Option to load E61 water with Gd provides an o000l GLGASIm
opportunity to measure neutron emission rates and 15[,(,(,;
capture on Gd as a function of E,. —-—c
5000;

[=]

1 2 3 4 5 6 7 ) 9 10
Capture gamma multiplicity
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A STAGED APPROACH — E61 PHASE O

® In an initial phase, the E61 detector will be built / ! / :

and installed on the surface at the J-PARC site.

— _Cbndidcfé site fof E61 Phase O
® Running in this mode will allow for: A

® Detector performance and calibration requirements to
be demonstrated;

® A precise measurement of the v, cross-section on
water.

* O(Ve)/o(vu) is a large, theory-driven contribution to
the uncertainty on T2K 5., measurement.

. 5 E
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A STAGED APPROACH - BEAM TEST

®* The aggressive time-scale being pursued (more on
next slide) might not allow for funding for a full-
sized Phase O detector to be secured in time.

® Alternative initial phase set-ups are being
considered using a smaller sized tank.

® A precise Vv, cross-section measurement would not be
possible with a small tank.

®* However, such a small tank could be easily placed in
a charged particle beam.

® This would provide an excellent opportunity to achieve
the initial phase goals of demonstrating performance
and calibration requirements for a small water
Cherenkov detector.

Such an experiment would also serve as a test-bed for
multi-PMT and other water Cherenkov R&D.

®* Beam test options are currently being investigated.

C. Vilela NUFACT 2017
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STATUS AND PROSPECTS

® Project received J-PARC Stage 1 approval in July 2016.

® NuPRISM and TITUS efforts merged into single collaboration: E61.

® Technical Design Report in preparation.

® Aim to take beam data:

®* For 2 years in Phase O.

® For 2 to 3 years in Phase 1 concurrently with T2K-II.

2017 2018 | 2018 2020 2021 | 2022

FY2017 FY2018 FY2019 FY2020 FY2021 FY2022

T2K/M2K-Nl
Hyper-K

NuPRISM Phase-0
NuPRISM Phase-1

mPMT Prototype

mPMT Design
mPMT Production

Phase-0 Facility Design
Facility Construction

Tank Design
Tank Construction

Detector Installation
Design

Construction
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SUMMARY

Long-baseline oscillation experiments are entering an era where
interaction uncertainties will become significant.
® Poorly understood feed-down effects can bias measurements and are difficult to

constrain with traditional near detectors as they are exposed to a different flux.

The E61 off-axis angle spanning technique gives a data-driven method

to convert E,__to E, ., decoupling the flux shape from interaction models.

truel/
Significant effort has led to a mature project, with sophisticated analyses

being developed using realistic simulation and reconstruction tools.

An extensive R&D programme for multi-PMTs is in place, with initial
prototypes currently in production.

The construction of an initial phase of the detector has been proposed.

® FEither a full-sized detector at J-PARC or a reduced detector on a test beam.

An aggressive time scale is being pursued, aiming at collecting a
significant amount of Phase 1 data concurrently with T2K-II.
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