19th International Workshop on Neutrinos from Accelerators

Physics potential of Hyper-Kamiokande for neutrino oscillations

C. Bronner September 28th, 2017

Outline

> Physics goals for neutrino oscillations

- Sensitivity with beam neutrinos and one detector
- > Atmospheric neutrinos and combination with beam neutrinos
- Second tank: staging and Korean detector options

Solar neutrino oscillations

Main physics goals (neutrino oscillations)

Violation of CP symmetry in neutrino oscillations?

+ improve measurements of oscillation parameters, tests of the 3 neutrino oscillation model

Looking for second order effects

Need more neutrino events

Hyper-Kamiokande

Hyper-Kamiokande builds on the successful strategies used to study neutrino oscillations in Super-Kamiokande, K2K and T2K with:

- Larger detector for increased statistics
- Improved photo-sensors for better efficiency
- > Higher intensity beam and updated/new near detector for accelerator neutrino part

- 60m height x 74m diameter tank
- 190 kton fiducial volume (SK:22.5 kton)
- Construct first tank as soon as possible
- Proposals for a second tank:
 - 6 years later in Japan
 - as soon as possible in Korea

Long baseline oscillations: T2HK

 Candidate site for Hyper-K ~8km south of Super-K
 Baseline (295km) and off-axis angle (2.5°) for J-PARC beam identical to Super-K: very "T2K-like" experimental apparatus

ND280 upgrade: official T2K project

E61: currently separate collaboration

Long baseline oscillations: T2HK Sensitivity studies

Setup similar to T2K: sensitivity studies based on framework used to evaluate						
T2K future sensitivity (PTEP 2015, 043C01 (2015))	Nominal values:					
SK MC and reconstruction	$sin^{2}(2\theta_{13})=0.1$					
Scaled to one 187kton f.v. tank	$sin^{2}(\theta_{23})=0.5$					
> 10 years run with 1.3 MW beam	$\Delta m^2_{32} = 2.4 \times 10^{-3} \text{ ev}^2/\text{c}^4$					
Running mode v:v is 1:3	$sin^{2}(2\theta_{12})=0.8704$					
Mass hierarchy assumed to be known	$\Delta m_{21}^2 = 7.6 \times 10^{-5} ev^2/c^4$					

Systematic uncertainties estimated based on T2K experience + expected improvement: - Updated near detector and Intermediate detector

Larger atmospheric control sample for far detector

	Sample	Flux + ND constrained xsec	x-sec ND independant	Far detector	Total	T2K 2017
ν	e-like	3.0%	0.5%	0.7%	3.2%	6.3%
mode	µ-like	3.3%	0.9%	1.0%	3.6%	4.4%
$\overline{\nu}$	e-like	3.2%	1.5%	1.5%	3.9%	6.4%
mode	µ-like	3.3%	0.9%	1.1%	3.6%	3.8%

Long baseline oscillations: T2HK Expected number of events: appearance

Expect >1000 signal events in each running mode
 Differences between the different values of δ in terms of number of events and spectrum

	Si	gnal			
	$\nu_{\mu} \rightarrow \nu_{e}$	$\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$	Background	Iotai	
v-mode	1643	15	400	2058	
v-mode	206	1183	517	1906	

Long baseline oscillations: T2HK Sensitivity to CP-violation

After 10 years of running:
 Exclude CP conservation at 5σ (3σ) for 57% (¹

- > Exclude CP conservation at 5σ (3σ) for 57% (76%) of possible true values of δ
- > Measure δ with 7° (true δ =0) to 23° (true δ =90°) precision

Long baseline oscillations: T2HK Expected number of events: disappearance

- Expect more than 10000 events in each running mode
- Clear oscillation pattern in the spectra
- > Larger "wrong-sign" background in $\overline{\nu}$ -mode

	ν _μ CCQE	ν _μ CC non QE	ν _μ CCQE	$\overline{\nu}_{\mu}$ CC non QE	Bkg	Total
v-mode	6043	2981	348	194	515	10080
$\bar{\nu}$ -mode	2699	2354	6099	1961	614	13726

Disappearance v mode

Disappearance \overline{v} mode

Long baseline oscillations: T2HK Sensitivity to atmospheric parameters

0.45

0.4

0.5

0.55

0.6

 $\sin^2\theta_{23}$

Normal hierarchy, "reactor constraint" $sin^2(2\theta_{13}) = 0.1 \pm 0.005$

 $\sin^2\theta_{23}$

2.2¹0.4 0.42 0.44 0.46 0.48 0.5 0.52 0.54 0.56 0.58 0.6 0.62

2.25

11

Atmospheric neutrinos

T2HK baseline is only 295km \rightarrow limited sensitivity to mass hierarchy Hyper-K can study oscillation of atmospheric v's like Super-K

- > 10 years running with one 186 kt fv detector
- No improvement of Super-K systematics assumed
- True mass hierarchy not assumed to be known

Atmospheric neutrinos

Using only atmospheric neutrinos:

- > Can hope to determine mass hierarchy at 3σ in the NH case
- \succ Some sensitivity to θ_{23} octant, but lower than beam neutrinos
- > Sensitivities depend on true θ_{23} value

Error bands: uncertainty due to unknown δ value

Atmospheric + beam neutrinos Mass hierarchy

Running Time (Years)

Atmospheric neutrinos

- Sensitive to mass hierarchy through matter induced resonance
- > Size of the effect depends of θ_{23}
- > Limited precision for θ_{23} and $|\Delta m^2_{32}|$

Beam neutrinos

- Very limited sensitivity to MH
- Good precision for θ₂₃ and
 [Δm²₃₂] measurements

Combining the two:

- \sim >3 σ ability to reject wrong MH
- \sim 5σ for larger values of sin²(θ_{23})

True $sin^2(\theta_{23})$	Atmospheric only	Atmospheric +beam
0.4	2.2 σ	3.8 σ
0.6	4.9 σ	6.2 σ

Atmospheric + beam neutrinos Sensitivity to CP violation

 Sensitivity to CP violation mainly coming from beam neutrinos
 Atmospheric neutrinos allow to break possible degeneracies between MH and δ when MH is unknown

Second detector Staging approach

- > Build first detector as soon as possible
- > Second, identical detector coming later
- > Assume here 2nd detector comes online 6 years later

Sensitivity to CP violation
(beam only)

	Exclude CP conservation		Precision of δ measurement		
	> 3σ > 5σ		δ=0	δ=90°	
1 tank	76%	57%	7°	23°	
Staging	78% 62%		7°	21°	

Second detector Second detector in Korea

Exploring the idea of putting second detector in Korea

- > 2 identical detectors with different baseline
- Longer baseline to Korea: study mass hierarchy with beam neutrinos
- Different L/E regions

Beam center Sea KOREA 1° 3° JAPAN J-PARC

Candidate sites at different OAA and L

	Off-axis angle	Baseline
Mt. Bisul	1.3°	1088 km
Mt. Bohyun	2.2°	1040 km

Second detector in Korea Expected number of events

L=1100km	Signal		Paakaround	Total	
	δ=0	$\nu_{\mu} \rightarrow \nu_{e}$	$\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$	Баскугойни	Τυται
	v-mode	140.6	2.4	81.8	224.8
	v-mode	159.1	23.9	95.5	278.5

 $sin^{2}(2\theta_{13})=0.085$, $sin^{2}(\theta_{23})=0.5$, $\Delta m^{2}_{32}=2.5x10^{-3} \text{ ev}^{2}/c^{4}$, normal hierarchy

Second detector in Korea Mass hierarchy determination

- Longer baseline to Korea: sensitivity to mass hierarchy with beam neutrinos
 Can determine mass hierarchy at 5σ after 10 years
- Combining with atmospheric neutrinos increases sensitivity

Error bands: uncertainty due to unknown δ value JD: Japanese Detector, KD: Korean detector, JDx2 does not assume staging True normal mass hierarchy

Second detector in Korea Sensitivity to CP violation

True hierarchy: NH

Different analysis than beam only for one Japanese detector showed in previous slides

Octant of θ_{23}

With 10 years of beam and atmospheric data:

- > Can determine octant at 5σ if $\sin^2(\theta_{23}) < 0.46$ or $\sin^2(\theta_{23}) > 0.56$ with one detector
- Increased sensitivity with a second detector

Error bands: uncertainty due to unknown δ value JD: Japanese Detector, KD: Korean detector, JDx2 does not assume staging

Future improvements

So far, sensitivities evaluated with tools from current experiments (T2K, SK) \rightarrow a number of developments planned

Updates form recent T2K analyses

- New reconstruction algorithm and analysis at far detector
- Extended fiducial volume
- > Additional appearance sample(s)
- Additional shape information for appearance samples

Systematic uncertainties

- Move to more detailed systematic model
- Reduction with updated near and intermediate detectors
- Improvement on far detector calibration
- > Flux uncertainties using external data

Updates from SK analysis

- > Use of neutron tagging
- Extension of fiducial volume
- Constraint on tau appearance background for electron samples

Simulation

- Move from scaled SK MC (SKDetsim) to real HK (WCSim) MC
- Effect of improved photosensors

Solar neutrino oscillations Day/night asymmetry

- Due to matter effects, expected rate of solar neutrinos is higher during night time
- > Observing this asymmetry can allow to resolve tension between solar neutrino and KamLAND measurements of Δm^2_{21}

Solar neutrino oscillations Spectrum upturn

- Transition from matter-dominated energy region to vacuum-dominated one for v_e survival probability creates an upturn in the spectrum
 Precise measurements of the spectrum allows to confirm MSW-LMA model and distinguish between standard oscillations and new physics
- Key parameter is the energy threshold (reduce radon background)

Summary

- > Hyper-Kamiokande will allow to study the three main open questions in neutrino oscillations: CP violation, mass hierarchy and octant of θ_{23}
- > With one detector and 10 years of beam and atmospheric neutrino data: - Exclude CP conservation at 5σ (3σ) for 57% (76%) of possible true values of δ
 - Measure δ with 7° (true δ =0) to 23° (true δ =90°) precision
 - Can determine mass hierarchy with >3 σ significance
 - Can determine octant at 5σ if $\sin^2(\theta_{23}) < 0.46$ or $\sin^2(\theta_{23}) > 0.56$
- Increased sensitivity with a second detector In particular second detector in Korea would give access to mass hierarchy with beam neutrinos, and study oscillations at the second maximum

Additional slides

 $P(\nu_{\alpha} \rightarrow \nu_{\beta})$ oscillates as a function of distance L traveled by the neutrino with periodicity $\Delta m^{2}_{ii}L/E$

 $(\Delta m_{ij}^2 = m_{i}^2 - m_{j}^2)$

Neutrino oscillations Parameters

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
$$(c_{ij} = \cos(\theta_{ij}), s_{ij} = \sin(\theta_{ij}))$$

Long baseline experiments Concept

Man-made neutrino beam produced by an accelerator

Several advantages:

- Better knowledge and control of neutrino flux
- Can select neutrino energy range
- Can use near detectors to reduce uncertainties
- Know direction of neutrinos reaching far detector
- Can produce either neutrino or anti-neutrino beam (compare oscillations of neutrinos and anti-neutrinos)

H. Tanaka @ TAUP2017

Long baseline oscillations: T2HK Systematic uncertainties used

31

Long baseline oscillations: T2HK Systematic uncertainties used

Correlation between the systematic uncertainties in the different Erec bins:

