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2Outline

➢ Physics goals for neutrino oscillations

➢ Sensitivity with beam neutrinos and one detector

➢ Atmospheric neutrinos and combination with beam 
neutrinos

➢ Second tank: staging and Korean detector options

➢ Solar neutrino oscillations



3Main physics goals
(neutrino oscillations)

Mass hierarchy:
m3 > m2, m1?

PDG 2016 summary table

Octant of θ23:

θ23>π/4?
θ23<π/4?

Violation of CP symmetry in neutrino oscillations?

+ improve measurements of oscillation parameters, tests of the 3 neutrino 
oscillation model



4Looking for second order effects
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Look for subtle effects by comparing  P(νµ→νe) and P(νµ→νe)
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Need more neutrino events

Mass hierarchy: ∆m²32/31 > 0? 
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CP violation: sin(δ) ≠ 0?

Octant of θ23: θ23=π/4 ? θ23>π/4 ? θ23<π/4 ?



5Hyper-Kamiokande

Hyper-Kamiokande builds on the successful strategies used to study 
neutrino oscillations in Super-Kamiokande, K2K and T2K with:
➢ Larger detector for increased statistics
➢ Improved photo-sensors for better efficiency
➢ Higher intensity beam and updated/new near detector for accelerator 

neutrino part

● 60m height x 74m diameter tank
● 190 kton fiducial volume 

(SK:22.5 kton)
● Construct first tank as soon as 

possible
● Proposals for a second tank:

- 6 years later in Japan
- as soon as possible in Korea



6Long baseline oscillations: T2HK

➢ Candidate site for Hyper-K ~8km south of Super-K
➢ Baseline (295km) and off-axis angle (2.5°) for J-PARC beam identical to 

Super-K: very “T2K-like” experimental apparatus

ν production Near 
detectors

On-axis

Off-axis Far detector

Hyper-Kamiokande

J-PARC  
beamline

0 280m 295 km

2.5˚
νμ νμ

Intermediate
detector

Spans 1 to 4°
off-axis

700m - 2km

E61

ND280 upgrade: official T2K project
E61: currently separate collaboration

Updated ND and 
new ID to reduce 
systematics



7Long baseline oscillations: T2HK
Sensitivity studies

Setup similar to T2K: sensitivity studies based on framework used to evaluate 
T2K future sensitivity (PTEP 2015, 043C01 (2015))
➢ SK MC and reconstruction
➢ Scaled to one 187kton f.v. tank
➢ 10 years run with 1.3 MW beam
➢ Running mode ν:ν is 1:3
➢ Mass hierarchy assumed to be known 

Sample Flux + ND 
constrained xsec

x-sec ND 
independant

Far 
detector

Total T2K 2017

ν 
mode

e-like 3.0% 0.5% 0.7% 3.2% 6.3%

µ-like 3.3% 0.9% 1.0% 3.6% 4.4%

ν 
mode

e-like 3.2% 1.5% 1.5% 3.9% 6.4%

µ-like 3.3% 0.9% 1.1% 3.6% 3.8%

Systematic uncertainties estimated based on T2K experience + expected improvement:
✔ Updated near detector and Intermediate detector
✔ Larger atmospheric control sample for far detector

Nominal values:
sin2(2θ13)=0.1
sin2(θ23)=0.5
Δm2

32=2.4x10-3 ev2/c4

sin2(2θ12)=0.8704
Δm2

21=7.6x10-5 ev2/c4



8Long baseline oscillations: T2HK
Expected number of events: appearance

➢ Expect >1000 signal events in each running mode
➢ Differences between the different values of δ in terms of number of events 

and spectrum

Signal
Background Total

νµ→νe νµ→νe

ν-mode 1643 15 400 2058

ν-mode 206 1183 517 1906

ν-mode ν-mode



9Long baseline oscillations: T2HK
Sensitivity to CP-violation

After 10 years of running:
➢ Exclude CP conservation at 5σ (3σ) for 57% (76%) of possible true values 

of δ
➢ Measure δ with 7° (true δ=0) to 23° (true δ=90°) precision

Ability to exclude CP conservation Precision of δ measurement

(Mass hierarchy assumed to be known)



10Long baseline oscillations: T2HK
Expected number of events: disappearance

➢ Expect more than 10000 events in each running mode
➢ Clear oscillation pattern in the spectra
➢ Larger “wrong-sign” background in ν-mode

νµ

 CCQE
νµ 

CC non QE
νµ 

CCQE
νµ 

CC non QE
Bkg Total

ν-mode 6043 2981 348 194 515 10080

ν-mode 2699 2354 6099 1961 614 13726



11Long baseline oscillations: T2HK
Sensitivity to atmospheric parameters

After 10 years:
➢ Measure Δm2

32 with 1.4x10-5ev2/c4 precision
➢ Measure sin2(θ23) with precision 0.006 to 0.017
➢ Some ability to determine octant of θ23

Normal hierarchy, “reactor constraint” sin2(2θ13) = 0.1 ± 0.005

True value 0.45 0.5 0.55

Precision 0.006 0.017 0.009

sin2(θ23) precision



12Atmospheric neutrinos

T2HK baseline is only 295km → limited sensitivity to mass hierarchy
Hyper-K can study oscillation of atmospheric ν’s like Super-K
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Eν [GeV]

Sensitivity studies based on SK analysis
➢ Scaled SK MC
➢ 10 years running with one 186 kt fv detector
➢ No improvement of Super-K systematics assumed
➢ True mass hierarchy not assumed to be known 



13Atmospheric neutrinos

Using only atmospheric neutrinos:
➢ Can hope to determine mass hierarchy at 3σ in the NH case
➢ Some sensitivity to θ23 octant, but lower than beam neutrinos
➢ Sensitivities depend on true θ23 value

Error bands: uncertainty due to unknown δ value

sin2(θ
23

) sin2(θ
23

)

Mass hierarchy determination Octant determination

Normal hierarchy
Inverted hierarchy

Normal hierarchy
Inverted hierarchy



14Atmospheric + beam neutrinos
Mass hierarchy

Beam neutrinos
➢ Very limited sensitivity to MH
➢ Good precision for θ23 and 

|Δm2
32| measurements

Atmospheric neutrinos
➢ Sensitive to mass hierarchy through 

matter induced resonance
➢ Size of the effect depends of θ23 
➢ Limited precision for θ23 and |Δm2

32| 

Combining the two:
✔ >3σ ability to reject wrong MH
✔ 5σ for larger values of sin2(θ23)

True NH
True IH

sin2(θ23)=0.4

sin2(θ23)=0.5

sin2(θ23)=0.6

True 
sin2(θ23)

Atmospheric 
only

Atmospheric 
+beam

0.4 2.2 σ 3.8 σ

0.6 4.9 σ 6.2 σ



15Atmospheric + beam neutrinos
Sensitivity to CP violation

➢ Sensitivity to CP violation mainly coming from beam neutrinos
➢ Atmospheric neutrinos allow to break possible degeneracies between 

MH and δ when MH is unknown

Atm. only
Beam only
Atm. + beam

True NH
True IH

Atm. only
Beam only
Atm. + beam

True NH
True IH

δCP δCP

True δ=0 True δ=90º



16Second detector
Staging approach

➢ Build first detector as soon as possible
➢ Second, identical detector coming later
➢ Assume here 2nd detector comes online 6 years later

Mass hierarchy determination
(beam + atmospheric)

True NH
True IH

sin2(θ23)=0.4

sin2(θ23)=0.5

sin2(θ23)=0.6

Exclude CP 
conservation

Precision of δ 
measurement

> 3σ > 5σ δ=0 δ=90°

1 tank 76% 57% 7° 23°

Staging 78% 62% 7° 21°

Sensitivity to CP violation
(beam only)



17Second detector
Second detector in Korea

Exploring the idea of putting second detector in Korea
➢ 2 identical detectors with different baseline
➢ Longer baseline to Korea: study mass hierarchy with beam neutrinos
➢ Different L/E regions

Candidate sites at different OAA and L

Off-axis 
angle

Baseline

Mt. Bisul 1.3° 1088 km

Mt. Bohyun 2.2° 1040 km

Look at oscillations at the 
2nd oscillation maximum



18Second detector in Korea
Expected number of events

T2HK (Japan) ~ Mt. Bisul (Korea)

Signal
Background Total

νµ→νe νµ→νe

ν-mode 140.6 2.4 81.8 224.8

ν-mode 159.1 23.9 95.5 278.5

L=1100km
OAA=1.5º
δ=0

sin2(2θ13)=0.085, sin2(θ23)=0.5, Δm2
32=2.5x10-3 ev2/c4, normal hierarchy



19Second detector in Korea
Mass hierarchy determination

➢ Longer baseline to Korea: sensitivity to mass hierarchy with beam neutrinos
➢ Can determine mass hierarchy at 5σ after 10 years
➢ Combining with atmospheric neutrinos increases sensitivity

Error bands: uncertainty due to unknown δ value
JD: Japanese Detector, KD: Korean detector, JDx2 does not assume staging
True normal mass hierarchy



20Second detector in Korea
Sensitivity to CP violation

With only beam neutrinos:
➢ Solve degeneracy between δ and MH if MH is unknown
➢ Increased precision on δ measurement around ±π/2

True hierarchy: NH
Different analysis than beam only for one Japanese detector showed in previous slides

Ability to exclude CP conservation Precision of δ measurement



21Octant of θ23

With 10 years of beam and atmospheric data:
➢ Can determine octant at 5σ if sin2(θ23)<0.46 or sin2(θ23)>0.56 with one 

detector
➢ Increased sensitivity with a second detector

5σ

Error bands: uncertainty due to unknown δ value
JD: Japanese Detector, KD: Korean detector, JDx2 does not assume staging



22Future improvements

So far, sensitivities evaluated with tools from current experiments (T2K, SK)
→ a number of developments planned

Updates form recent T2K analyses
➢ New reconstruction algorithm and 

analysis at far detector
➢ Extended fiducial volume
➢ Additional appearance sample(s)
➢ Additional shape information for 

appearance samples

Updates from SK analysis
➢ Use of neutron tagging
➢ Extension of fiducial volume
➢ Constraint on tau appearance 

background for electron samples

Simulation
➢ Move from scaled SK MC (SKDetsim) 

to real HK (WCSim) MC
➢ Effect of improved photosensors

Systematic uncertainties
➢ Move to more detailed systematic 

model
➢ Reduction with updated near and 

intermediate detectors
➢ Improvement on far detector 

calibration
➢ Flux uncertainties using external data



23Solar neutrino oscillations
Day/night asymmetry

➢ Due to matter effects, expected rate of solar neutrinos is higher during 
night time

➢ Observing this asymmetry can allow to resolve tension between solar 
neutrino and KamLAND measurements of Δm2

21

Reject no asymmetry (0.3% syst)
Distinguish solar/KamLAND Δm2

21:
 with 0.3% systematics
 with 0.1% systematics 



24Solar neutrino oscillations
Spectrum upturn

➢ Transition from matter-dominated energy region to vacuum-dominated one for νe 
survival probability creates an upturn in the spectrum

➢ Precise measurements of the spectrum allows to confirm MSW-LMA model and 
distinguish between standard oscillations and new physics

➢ Key parameter is the energy threshold (reduce radon background) 

4.5 MeV energy threshold
3.5 MeV energy threshold

Upturn observation sensitivity

Super-K 



25Summary

➢ Hyper-Kamiokande will allow to study the three main open questions in 
neutrino oscillations: CP violation, mass hierarchy and octant of θ23

➢ With one detector and 10 years of beam and atmospheric neutrino data:
- Exclude CP conservation at 5σ (3σ) for 57% (76%) of possible true 
values of δ
- Measure δ with 7° (true δ=0) to 23° (true δ=90°) precision
- Can determine mass hierarchy with >3σ significance
- Can determine octant at 5σ if sin2(θ23)<0.46 or sin2(θ23)>0.56

➢ Increased sensitivity with a second detector
In particular second detector in Korea would give access to mass 
hierarchy with beam neutrinos, and study oscillations at the second 
maximum
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Additional slides



  

27Neutrino oscillations

Flavor eigenstates
(interaction)

Mass eigenstates
(propagation)

Mixing (or Pontecorvo-Maki-Nagawa-Sakata) matrix 
link between the two sets of eigenstates

νµ

µ+

νe

Propagation

e-

P(να→νβ) oscillates as a function of distance L 
traveled by the neutrino with periodicity Δm2

ijL/E

(Δm2
ij=m2

i-m
2

j)
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 P(να→νβ) depends on 6 parameters:
➔ 3 mixing angles :

θ12, θ23, θ13
➔ 2 mass splittings : Δm2

ij
➔ 1 (complex) phase :

 The CP phase δ

(cij = cos(θij), sij = sin(θij))

Amplitude

Periodicity

Difference in oscillations ν/ν
(matter / anti-matter)

Neutrino oscillations
Parameters



  

29Long baseline experiments
Concept

Man-made neutrino beam produced by an accelerator

Accelerator
+beamline

Near detectors Far detector

0 ~100m-1km 200-1000 km

νμ νμProduce 
neutrino 

beam using 
accelerated 

protons

Measure 
neutrino beam 

properties 
before 

oscillations

Detect neutrinos 
after propagation

Oscillations

Several advantages:
● Better knowledge and control of neutrino flux
● Can select neutrino energy range
● Can use near detectors to reduce uncertainties
● Know direction of neutrinos reaching far detector
● Can produce either neutrino or anti-neutrino beam

(compare oscillations of neutrinos and anti-neutrinos)

νμ → νe appearance
νμ → νX disappearance
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H. Tanaka @ TAUP2017



  

31Long baseline oscillations: T2HK
Systematic uncertainties used



  

32Long baseline oscillations: T2HK
Systematic uncertainties used

Correlation between the systematic uncertainties in the different Erec bins:
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