

DUNE Oscillation Physics

Nick Grant (University of Warwick) for the DUNE collaboration

NUFACT 2017

University of Uppsala 28th September 2017

DUNE physics aims

- DUNE has a rich physics programme which includes:
- I. Make precise measurements of the oscillation parameters θ_{23} , θ_{13} and Δm_{31}^2 .
- 2. Resolve the neutrino mass hierarchy, i.e. whether $m_3^2 > m_2^2$ or $m_3^2 < m_2^2$.
- 3. Determine the octant of θ_{23} .
- 4. Determine whether CP is violated in neutrinos and make a measurement of δ_{CP} .
- 5. Search for τ appearance.
- 6. Check the unitarity of the PMNS matrix
- 7. Search for nucleon decay, e.g. $p^+ \rightarrow K^+$ nubar.
- 8. Be ready to detect low-energy neutrinos from a core-collapse supernova.
- 9. Search for Beyond Standard Model physics, e.g. sterile neutrinos, heavy neutral leptons, large extra dimensions, non-standard interactions.

This talk will focus on neutrino oscillation physics (items 1-4) at DUNE.

The Deep Underground Neutrino Experiment (DUNE) is a large international collaboration with >1000 collaborators from 164 institutions in 30 countries.

THE UNIVERSITY OF WARWICK

DUNE will make a beam of V_{μ} or V_{μ} bar at Fermilab. This beam will pass through the near detector (574 metres from target) and the far detector (1300 km distant).

Neutrino beam and near detector at Fermilab

DUNE neutrino beam

THE UNIVERSITY OF WARWICK

The DUNE neutrino beam will be made using a proton beam that is initially 1.2 MW and can be upgraded to 2.4 MW.

The neutrino beam will be on axis and have a broad range of energies covering both the first and second oscillation maxima - these are shown with red arrows 1.

For further details, please see talk by Tristan Davenne on Monday at 15.30.

DUNE

DUNE near detector

THE UNIVERSITY OF WARWICK

The near detector (ND) will be a ~30 tonne liquid argon time projection chamber with a downstream magnetised multi-purpose spectrometer at Fermilab. Design of spectrometer not yet finalised, it could be a straw-tube tracker or a high-pressure gas argon time projection chamber.

Its goals are

I. Constrain systematic uncertainties, e.g. flux and cross sections, in oscillation analyses.

2. Make precision measurements of neutrino interaction cross sections - for further details, please see talk by Hongyue Duyang on Friday at 12.00.

3. Search for new physics, e.g. sterile neutrinos.

DUNE timeline

Neutrino mass hierarchy

If $\delta_{CP} \neq 0$ or π , the oscillation probability $P(\nu_{\mu} \rightarrow \nu_{e})$ is not the same as $P(\nu_{\mu}bar \rightarrow \nu_{e}bar)$. There is also a significant difference between $P(\nu_{\mu} \rightarrow \nu_{e})$ and $P(\nu_{\mu}bar \rightarrow \nu_{e}bar)$ due to matter effects.

Due to the 1300 km baseline, the asymmetry due to matter effects is ~40% in region of peak flux, which is greater than largest possible asymmetry from CP violation. The sign of this difference depends on the mass hierarchy. This means that the mass hierarchy can be resolved by DUNE irrespective of the value of δ_{CP} .

CP violation

To search for $e^{|v_1\rangle}_{dt}$ and $e^{|v_1\rangle}_{dt}$ to reconstructed spectra; field to disentangle matter effects from those due to CP violation.

 $P(v_{\mu} \rightarrow v_{e}) - P(\overline{v}_{\mu} \rightarrow \overline{v}_{e})$ has 3 terms to good approximation (formulae in backup).

(ref: https://arxiv.org/pdf/hep-ph/9703351.pdf)

The three terms all oscillate but amplitudes have different energy dependence. Can separate CP violation from matter effects using broad range of energies. CP term more important at low energy.

DUNE

Reconstructed energy spectra

THE UNIVERSITY OF WARWICK

Sensitivities to the mass hierarchy and CP violation are obtained by using GLoBES to simultaneously fit the $V_{\mu} \rightarrow V_{\mu}$, V_{μ} bar $\rightarrow V_{\mu}$ bar, $V_{\mu} \rightarrow V_{e}$ and V_{μ} bar $\rightarrow V_{e}$ bar reconstructed spectra.

Assume 50% of running in neutrino mode, 50% in antineutrino mode.

2026 20 kt far detector with 1.2 MW beam

2027 30 kt far detector

2029 40 kt far detector

2032 Upgrade to 2.4 MW beam

Uncertainties

Neutrino oscillation parameters are allowed to vary in the fits with a Gaussian constraint using NuFit 2016 values.

Effect of systematic uncertainties is approximated using normalisation uncertainties in each constituent interaction mode that comprise signal and background in each event sample.

Signal normalisation uncertainty is 5 \oplus 2% in both neutrino and antineutrino modes, where 5% is the normalisation uncertainty in the FD v_{μ} sample and 2% is the effective uncorrelated uncertainty in the FD v_e sample after fits to both ND and FD data and external constraints.

Sensitivities

Sensitivities are calculated using test statistic $\Delta \chi^2$ comparing reconstructed spectra for different hypotheses:

 $\Delta \chi^2_{MH} = \chi^2_{IH} - \chi^2_{NH} \text{ (true normal hierarchy),} \\ \Delta \chi^2_{MH} = \chi^2_{NH} - \chi^2_{IH} \text{ (true inverted hierarchy)}$

$$\Delta \chi^2_{CPV} = Min[\Delta \chi^2_{CP}(\delta^{test}_{CP} = 0), \Delta \chi^2_{CP}(\delta^{test}_{CP} = \pi)], \text{ where } \Delta \chi^2_{CP} = \chi^2_{\delta^{test}_{CP}} - \chi^2_{\delta^{true}_{CP}}$$

Scan over all values of true δ_{CP} and use lowest value of $\Delta \chi^2$. Assume mass hierarchy and θ_{23} octant unknown, vary them in fits and use lowest value of $\Delta \chi^2$.

More details of the GLoBES configuration are given in https://arxiv.org/pdf/1606.09550.pdf

Sensitivity to determination of mass hierarchy as a function of true value of δ_{CP} . Bands represent range of sensitivity for different values of θ_{23} (NuFit 2016 90% C.L. range). Significance increases with increasing θ_{23} .

 θ_{13} and Δm_{31}^2 have smaller effect on significance than θ_{23} .

Inverted ordering

Mass hierarchy sensitivity

Sensitivity to determination of mass hierarchy as a function of time

Normal mass ordering is assumed.

Bands represent range of sensitivity for different values of θ_{23} (NuFit 2016 90% C.L. range)

Bands represent difference between 1% and 3% uncertainty in Ve signal normalisation

DUVE Sensitivity to θ_{23} octant

THE UNIVERSITY OF WARWICK

Significance with which θ_{23} octant can be determined as a function of true value of sin² θ_{23} . Normal mass ordering is assumed.

Bands represent range of significance for different values of δ_{CP} ; band covers least extreme 80% of values, i.e. best and worst 10% of significances are not shown.

Yellow shaded band represents 90% C.L. allowed region for value of $sin^2\theta_{23}$ from NuFit 2016.

Sensitivity to CP violation

THE UNIVERSITY OF WARWICK

Significance with which CP violation ($\delta_{CP} \neq 0$ or π) can be determined as a function of true value of δ_{CP} .

Bands represent range of significance for different values of θ_{23} (NuFit 2016 90% C.L. range). Significance decreases with increasing θ_{23} .

 θ_{13} and Δm_{31}^2 have smaller effect on significance than θ_{23} .

Normal ordering

Significance with which CP violation ($\delta_{CP} \neq 0$ or π) can be determined (left) and δ_{CP} resolution (right) as a function of time.

Normal mass ordering is assumed.

Bands represent resolution for different values of θ_{23} (NuFit 2016 90% C.L. range). Resolution worsens with increasing θ_{23}

Oscillation parameter resolution

Resolutions of measurements of $sin^2\theta_{23}, sin^22\theta_{13}$ and $\Delta m_{31}{}^2$

Normal mass ordering

Bands represent range of resolution for different values of θ_{23} (NuFit 2016 90% C.L. range).

DUNE will use an on-axis V_{μ} and V_{μ} bar beam with a broad range of energies including the first and second oscillation maxima.

Due to its long baseline of 1300 km, neutrino oscillations between the DUNE near and far detectors will be significantly altered by matter effects.

These features will enable DUNE to resolve the neutrino mass hierarchy and the octant of θ_{23} , search for CP violation in neutrinos and measure δ_{CP} in a single experiment. DUNE will also make measurements of θ_{23} , θ_{13} and Δm_{31}^2 , search for T appearance and test the unitarity of the PMNS matrix.

We expect to update the sensitivities presented here with an analysis based on full MC simulation, full reconstruction and a more complete systematics treatment by 2019.

BACKUP SLIDES

Reference beam flux

80 GeV protons 204 m x 4 m helium-filled decay pipe 1.07 MW Two-horn system with 1 m target inserted 2/3 of way into horn 1

Optimised beam flux

3 horns, 2 m target entirely in horn 1; this increases flux in oscillation region (including second maximum), decreases flux in high-energy tail, increases sensitivity to CP violation. For more details, please see talk by Tristan Davenne at 15.30 on Monday.

Expected detector performance

Based on previous experience, e.g. ICARUS, ArgoNEUT

Cross sections

GENIE

Systematic uncertainties

Anticipated systematic uncertainties based on experience from MINOS and T2K. Supported by preliminary studies with DUNE fast Monte Carlo.

Source of	MINOS	T2K	DUNE
Uncertainty	$ u_e$	$ u_e$	$ u_e$
Beam Flux	0.3%	3.2%	2%
after N/F			
extrapolation			
Interaction	2.7%	5.3%	$\sim 2\%$
Model			
Energy scale	3.5%	included	(2%)
(ν_{μ})		above	
Energy scale	2.7%	2.5%	2%
(ν_e)		includes	
		all FD	
		effects	
Fiducial	2.4%	1%	1%
volume			
Total	5.7%	6.8%	3.6 %
Used in DUNE			$5\% \oplus 2\%$
Sensitivity			
Calculations			

DUNE goal for total uncertainty in V_e sample is <4%. Cancellation of correlated portion of uncertainty is expected in four-sample fit, meaning that residual uncorrelated uncertainty in V_e sample is reduced to 1-2%. For sensitivities used 5 \oplus 2%, uncorrelated between neutrinos and antineutrinos.

Absolute normalisation of V_{μ} sample must be known to ~5% and normalisation of V_{e} sample, relative to V_{μ} , V_{μ} bar and V_{e} bar samples and after applying all constraints from external, near and far detector data, must be determined to the few percent level.

Background uncertainties

Background	Normalization Uncertainty	Correlations					
For $\nu_e/\bar{\nu}_e$ appearance:							
Beam ν_e	5%	Uncorrelated in $ u_e$ and $ u_e$ samples					
NC	5%	Correlated in $ u_e$ and $ u_e$ samples					
$ u_{\mu}$ CC	5%	Correlated to NC					
$ u_{ au}$ CC	20%	Correlated in $ u_e$ and $ u_e$ samples					
For $\nu_{\mu}/\bar{\nu}_{\mu}$ disappearance:							
NC	5%	Uncorrelated to $ u_e/ar{ u}_e$ NC background					
$\nu_{ au}$	20%	Correlated to $ u_e/ar{ u}_e \ u_{ au}$ background					

THE UNIVERSITY OF WARWICK

Adjust energy bins from n(E) to n[(1+a)E].

Mass Hierarchy Sensitivity

CP Violation Sensitivity

Uncertainties in oscillation parameters

Uncertainties in oscillation parameters

Particle response and thresholds

Parametrised detector response for individual final-state particles

Particle Type	Threshold (KE)	Energy/momentum Resolution	Angular Resolution
μ±	30 MeV	Contained: from track length Exiting: 30 %	1 °
π^{\pm}	100 MeV	MIP-like: from track length Contained π-like track: 5% Showering/Exiting: 30 %	1°
e±/γ	30 MeV	2% ⊕ 15 %/√(E/GeV)	1 °
р	50 MeV	p < 400 MeV: 10 % p > 400 MeV: 5% ⊕ 30%/√(E/GeV)	5°
n	50 MeV	440%/√(E/GeV)	5°
other	50 MeV	5% ⊕ 30%/√(E/GeV)	5°

$Uncertainty \ in \ M_A$

Uncertainties in M_AQE and M_ARes reduce sensitivity to CP violation if only v_e sample considered (blue dotted line). However this reduction is much less if all four samples fitted together (red dotted line).

CP Violation Sensitivity

$$\begin{array}{c} \begin{array}{c} & & \\$$