

disappearance analysis

Linda Cremonesi for the NOvA collaboration

Outline

- The NOvA experiment
- The Far Detector Extrapolation
- Uncertainties
- Results
- Improvements for future analyses

Motivation

- θ₂₃ was the first angle to be measured but (prior to NOvA and T2K) was the one known to the least precision.
- 2. A precision measurement of θ_{23} can help determine the correct texture for the PMNS matrix.
- An accurate measurement of θ₂₃ improves the NOvA appearance measurement (and if it is non-maximal, could allow us to resolve the octant.)

The NOvA experiment

NOvA detectors

L. Cremonesi "NOvA ν_{μ} analysis"

15.5 m

Near Detector Event Display

Colours show hit times

Far Detector 550 µs Readout Window

Cell hits coloured by recorded charge (~photoelectrons)

Far Detector 10 µs NuMI Beam Window

Cell hits coloured by recorded charge (~photoelectrons)

Muon neutrino disappearance

$$P(\nu_{\mu} \rightarrow \nu_{\mu})$$

$$= 1 - (\sin^{2} 2\theta_{13} \sin^{2} \theta_{23} + \cos^{4} \theta_{13} \sin^{2} 2\theta_{23}) \sin^{2} \left(\frac{\Delta m^{2} L}{4E}\right)$$

- 1. Measure neutrinos at ND
- Extrapolate measurements to make [∞] FD prediction ↑
- 3. Compare FD data to prediction to find best fit of oscillation parameters

Muon neutrino selection

- Use 4 variable k-Nearest Neighbour to select µ
- Separate vµ CC interactions from NC and cosmic-ray backgrounds
- At FD additional Cosmic rejection from event topology and Boosted Decision Tree
- Selection is 81% efficient and 91% pure

Neutrino energy estimation

- Muon dE/dx used in length-toenergy conversion
- Hadronic energy estimated from calorimetric sum of non-muon hits
- ~7% resolution on neutrino energy

Far detector prediction

Far Detector Prediction

Systematic uncertainties

 The effect of many large uncertainties is reduced by the near-to-far extrapolation technique (cross sections, beam flux, etc.)

Systematic (*)	Effect on sin²(θ ₂₃)	Effect on Δm ² ₃₂
Normalisation	± 1.0%	±0.2 %
Muon E scale	± 2.2%	±0.8 %
Calibration	± 2.0 %	±0.2 %
Relative E scale	± 2.0 %	±0.9 %
Cross sections + FSI	± 0.6 %	±0.5 %
Osc. parameters	± 0.7 %	± 1.5 %
Beam backgrounds	±0.9 %	±0.5 %
Scintillation model	± 0.7 %	±0.1 %
All systematics	± 3.4 %	± 2.4 %
Stat. Uncertainty	± 4.1 %	± 3.5 %

(*) Relative contribution evaluated at sin²(θ_{23}) = 0.514 and Δm^2_{32} = 2.52 x 10⁻³ eV²

- The 2015 analysis was dominated by a large systematic uncertainty placed on the hadronic energy component (which has since been significantly reduced.)
- All systematics were evaluated by varying the MC based steps in the extrapolation.

NuMu FD spectrum

- Observed: 78 events
- Predicted with NO oscillation: 473 ± 30 events
- Predicted at the best fit point 82 events
- 3.7 from beam background •
- 2.9 cosmic induced events •

L. Cremonesi "NOvA v_{μ} analysis"

NOvA Preliminary

Oscillation measurement

Maximal Mixing Disfavoured at 2.56 σ

 $|\Delta m^2_{32}| = 2.67 \pm 0.11 \times 10^{-3} \text{eV}^2$

 $\sin^2 \theta_{23} = 0.404^{+0.030}_{-0.022}(0.624^{+0.022}_{-0.030})$

Best Fit in NO:

Improvement 1: Energy Resolution

Separate well resolved energies by quantiles of hadronic energy fraction

Improvement 1: Energy Resolution

Improvement 2: PID

- CVN (Convolutional Visual Network) used by the electron neutrino appearance analysis already
- Based on CNN (Convolutional Neural Networks)
- Hit maps are read as images with filters applied to them to extract features

Including CVN in our selections improves efficiency by ~10% while reducing background by nearly 50%

Improvement 3: Binning

Finer binning around the maximum oscillation region could enhance the sensitivity of the analysis

- NOvA's standard energy binning: 20 bins of 0.25 GeV each
- Optimum binning: increased number of bins between 1 and 2 GeV

L. Cremonesi "NOvA v_{μ} analysis"

20

Combined improvements

Combination of the improvements reduces uncertainties and significantly increases our sensitivity:

- Systematic uncertainties reduced from 2.2% to 2.0% on $\Delta m^{2}{}_{32}$ and from a 2.1% to 1.5% on $sin^{2}\theta_{23}$
- Maximal mixing rejection from 2.51 to 3.250 equivalent to 75% more data

Outlook

- Analysis of 6.05x10²⁰ POT of NOvA data (1 nominal year)
- Muon-neutrino disappearance (Phys. Rev. Lett. 118, 151802 (2017))
 - Best fit to muon-neutrino disappearance data is a non-maximal value of θ_{23} , maximal mixing disfavoured at 2.56 σ
- Current analysis improvement will result maximal mixing rejection from 2.56 to 3.25σ (equivalent to 75% more data) for 2017 oscillation analysis parameters.
- Didn't mention here our electron neutrino appearance, sterile neutrino search, neutrino interaction, supernova, monopoles, and a lot more
- Switched to anti-neutrino running in February and already have 3e20 POT - Stay tuned!

Thank you!

Fermilab

N

23

NO YA

Neutrino beam

NuMI beam performance

- Present results data collected between February 6, 2014 and May 2, 2016
- Equivalent to 6.05x10²⁰ protons-on-target in a full 14 kT detector
- Beam had been running at 560 kW
- · Achieved 700 kW design goal, most powerful neutrino beam in the world

Why off-axis?

- NOvA detectors are located 14 mrad off the NuMI beam axis.
- With the medium-energy NuMI configuration, it yields a narrow 2-GeV spectrum at the NOvA detectors due to meson decay kinematics:

$$E_{\nu} = \frac{1 - (m_{\mu}/m_{\pi})^2}{1 + \gamma^2 \tan^2 \theta} E_{\pi}$$

• Location reduces NC and v_e CC backgrounds in the oscillation analyses while maintaining high v_{μ} flux at 2 GeV.

Event topologies

FD Cosmic Rejection

NOvA Preliminary

- We expect ~65,000 cosmic rays in-time with the NuMI beam spills per day. The expected number of contained vµ CC events per day is only a few.
- Containment cuts will remove 99% of the cosmics.
- We use a boosted-decision-tree (BDT) algorithm that takes input from reconstruction variables to reject the remaining cosmics.
- All cuts together give us > 15:1 s:b. Cosmics are reduced by 10⁷!

NuMu disappearance IO

Looking forward

- Switched to anti-neutrino running in February 2017 (50% neutrino, 50% anti-neutrino after 2018)
- 3 σ sensitivity to maximal mixing of $\theta_{_{23}}$ in 2018
- 2 σ sensitivity to mass hierarchy and $\theta_{_{23}}$ octant in 2018-2019