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• The NOvA experiment 

• The Far Detector Extrapolation 

• Uncertainties 

• Results 

• Improvements for future analyses
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1. θ23 was the first angle to be measured but (prior to 
NOvA and T2K) was the one known to the least 
precision. 

2. A precision measurement of θ23 can help determine the 
correct texture for the PMNS matrix. 

3. An accurate measurement of θ23  improves the NOvA 
appearance measurement (and if it is non-maximal, 
could allow us to resolve the octant.)

Motivation
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The NOvA experiment

• NOvA is a long-baseline neutrino 
oscillation experiment 

• Observes neutrinos from NuMI 
beamline at Fermilab 

• Two functionally identical detectors, 
situated 14 mrad off axis, 810 km apart 

• Near Detector is 300 tons 
(FNAL) 

• Far Detector is 14 ktons (Ash 
River, MN)
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NOvA detectors

• Two functionally identical detectors 

• Extruded plastic cells alternating vertical and 
horizontal orientation filled with liquid scintillator 

• Charged particles passing through cells produce 
light which is collected.
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Near Detector Event Display

Colours show hit times

Beam direction
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Cell hits coloured by recorded charge (~photoelectrons)

Far Detector 550 μs Readout Window

Beam direction
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Cell hits coloured by recorded charge (~photoelectrons)

Far Detector 10 μs NuMI Beam Window

Beam direction
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Muon neutrino disappearance

1. Measure neutrinos at ND 

2. Extrapolate measurements to make 
FD prediction  

3. Compare FD data to prediction to 
find best fit of oscillation parameters

Small
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Muon neutrino selection
• Containment cuts remove activity near walls  

• Use 4 variable k-Nearest Neighbour to select μ 

• Separate νμ CC interactions from NC and 
cosmic-ray backgrounds 

• At FD additional Cosmic rejection from event 
topology and Boosted Decision Tree  

• Selection is 81% efficient and 91% pure
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Cosmic background
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Neutrino energy estimation
• Muon dE/dx used in length-to-

energy conversion 

• Hadronic energy estimated from 
calorimetric sum of non-muon hits 

• ~7% resolution on neutrino energy

+ =
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Far detector prediction
Translate ND data/
MC observation to 

true energy
Oscillate ratio 

to the FD

Smear back into 
reconstructed 

energy
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Far Detector Prediction
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Systematic uncertainties
• The effect of many large 

uncertainties is reduced by the 
near-to-far extrapolation 
technique (cross sections, beam 
flux, etc.)
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• The 2015 analysis was dominated by a large systematic uncertainty 
placed on the hadronic energy component (which has since been 
significantly reduced.) 

• All systematics were evaluated by varying the MC based steps in the 
extrapolation.
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NuMu FD spectrum
• Observed: 78 events 
• Predicted with NO oscillation: 473 ± 30 events 
• Predicted at the best fit point 82 events 
• 3.7 from beam background 
• 2.9 cosmic induced events
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Oscillation measurement
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Improvement 1: Energy Resolution
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Eν = Eμ + Ehad

Mean resolution: 
• Eμ = 3.5 % 
• Ehad = 25% 
• Eν = 7%

Neutrino energy  
resolution 
 Ehad / Eν

Separate well resolved energies by quantiles of hadronic energy fraction

Cosmics NC
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Improvement 1: Energy Resolution
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Eν = Eμ + Ehad

Mean resolution: 
• Eμ = 3.5 % 
• Ehad = 25% 
• Eν = 7%

Neutrino energy  
resolution 
 Ehad / Eν

Neutral current systematic impact 
improves by a factor of 2-4:

sin2θ23 +3.3/-6.6% —> +1.4/-2.3% 

Δm232  +9.2/-17% —> +3.3/-4.6%
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Improvement 2: PID
• CVN (Convolutional Visual Network)  used by the electron 

neutrino appearance analysis already
• Based on CNN (Convolutional Neural Networks)
• Hit maps are read as images with filters applied to them to 

extract features
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Including CVN in our 
selections improves 

efficiency by ~10% while 
reducing background by 

nearly 50%
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Improvement 3: Binning
Finer binning around the maximum oscillation region could enhance 
the sensitivity of the analysis 
• NOvA’s standard energy binning: 20 bins of 0.25 GeV each 
• Optimum binning: increased number of bins between 1 and 2 GeV
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NOvA 2017 Binning A
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Combined improvements

Combination of the improvements reduces uncertainties and significantly 
increases our sensitivity: 
• Systematic uncertainties reduced from 2.2% to 2.0% on Δm232 and from a 

2.1% to 1.5% on sin2θ23 
• Maximal mixing rejection from 2.51 to 3.25σ equivalent to 75% more data
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Outlook
• Analysis of 6.05x1020 POT of NOvA data (1 nominal year) 

• Muon-neutrino disappearance (Phys. Rev. Lett. 118, 151802 (2017)) 
• Best fit to muon-neutrino disappearance data is a non-maximal value of 

θ23, maximal mixing disfavoured at 2.56σ 

• Current analysis improvement will result maximal mixing rejection 
from 2.56 to 3.25σ (equivalent to 75% more data) for 2017 oscillation 
analysis parameters. 

• Didn’t mention here our electron neutrino appearance, sterile 
neutrino search, neutrino interaction, supernova, monopoles, and a 
lot more 

• Switched to anti-neutrino running in February and already have 3e20 
POT - Stay tuned!
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Thank you!
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Neutrino beam

• 120 GeV protons extracted from the Main Injector at 
Fermilab in 10 μs spills 

• Focus secondary pions using magnetic horns 

• Positive hadrons for neutrino beam 

• Negative hadrons for antineutrino beam 

• Decay kinematics mean a detector at 14.6 mrad sees 
a narrowly peaked energy spectrum 

• Beam 97.5% νμ with 0.7% νe and 1.8% wrong-sign

NuMI Beam
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NuMI beam performance

• Present results data collected between February 6, 2014 and May 2, 2016 

• Equivalent to 6.05x1020 protons-on-target in a full 14 kT detector 

• Beam had been running at 560 kW

• Achieved 700 kW design goal, most powerful neutrino beam in the world

Detector Commissioning
(Reduced Mass)

First Analysis
2.74x1020 POT-equiv

Total Exposure
6.05x1020 POT Switched to 

antineutrinos 
on Feb 20th 
2017
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Why off-axis?

• NOvA detectors are located 14 
mrad off the NuMI beam axis. 

• With the medium-energy NuMI 
configuration, it yields a narrow 
2-GeV spectrum at the NOvA 
detectors due to meson decay 
kinematics: 

• Location reduces NC and νe CC 
backgrounds in the oscillation 
analyses while maintaining high 
νμ flux at 2 GeV.
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Event topologies
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FD Cosmic Rejection
• We expect ~65,000 cosmic 

rays in-time with the NuMI 
beam spills per day. The 
expected number of 
contained νμ CC events per 
day is only a few. 

• Containment cuts will remove 
99% of the cosmics.
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Cosmic rejection BDT output
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• We use a boosted-decision-tree (BDT) algorithm that takes input 
from reconstruction variables to reject the remaining cosmics. 

• All cuts together give us > 15:1 s:b. Cosmics are reduced by 107!
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NuMu disappearance IO
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Looking forward

• Switched to anti-neutrino running in February 2017 (50% neutrino, 50% anti-neutrino after 2018) 

• 3 σ sensitivity to maximal mixing of θ23 in 2018 

• 2 σ sensitivity to mass hierarchy and θ23 octant in 2018-2019
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