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Plane of vertical cells

Plane of horizontal cells

* Detectors are long-baseline tracking calorimeters
* FD (at Ash River, MN, 810 km baseline):

— 16m x 16m x 60m, 14 kton, on surface
— ~2/3 LS by mass, ~344,000 cells (99.5% operational), 896 planes

* ND (@ FNAL, 1km from NuMI target):

— 4m x4m x 16m, 0.3kton, underground
— ~20,000 cells, design similar to FD

— functionally identical; main differences: size and ND ‘'muon catcher’, a
range stack at the back end of alternating steel and scintillator planes



NOVA oscillation channels

P(v,2Vv,) = 1-5sin?(26,5)sin*(1.27Am?;,L/E)
Direct measurement of 0,; (maximal?), Am?,,
Backgrounds: NC neutrinos, cosmic rays

Signature: high E muon, vertex hadronic activity

v, Appearance

P(v,2V,) ~ sin?0,35in?26,;sin*(Am?;,L/4E)
Measure 0,,, possibly hierarchy, constrain .,
Background: beam contamination, NC, cosmics

Signature is EM shower from electron
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NOVA Simulation
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* NOvVA’s energy range of 1-4 GeV sits right in a region that allows
all different interaction modes. QE, RES, DIS, (and 2p2h/MEC!)
are all important to us. This makes things complicated!


http://dx.doi.org/10.2172/1042577
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* Each of these channels have different selection efficiency and

reconstructed energy biases. We measure E

a function of E,, ., and we bridge the two with simulation. Getting

true’

reco’

but oscillations are

the relative contribution of each correct in our simulation is thus a
critical part of an oscillation analysis.



~~ NOvA ED

e But we know our simulation is imperfect. So what do we do? One
thing we do is extrapolate. Our ND is functionally identical to our
FD (except for size), has incredible statistics, and can be used to

measure flux and cross section effects. An extrapolation example
from our first disappearance analysis follows:
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First, our ND simulation is reweighted to
match the measured ND reconstructed
energy spectrum. This reweighted energy
is transformed into true energy via the
simulation reco to true matrix.
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ND Events

True Energy (GeV)

x10

— ND Data
— Base Simulation
— Data-Driven Prediction

%

|x106_ i

%1077

1 o2 3 4
ND Estimated Energy (GeV)

' 040
ND Events/GeV

] 20 140 ' '
F/N Ratio P(vp—w“) FD Events/GeV

This true energy spectrum has our
known FD/ND detector differences
applied, taking into account the
different detector efficiencies and
angles subtended. Oscillations are
also applied.
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Finally, this true FD energy

spectrum is transformed back
to reconstructed energy, again
using simulation, to obtain our

final extrapolated prediction.
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* This entire procedure is re-done beginning ¢ It is not perfect though — it deals
to end for each combination of oscillation well with normalization effects, but
parameters or systematics being tested poorly with large energy shifts
e The extrapolation prOVides a data-driven e Thusitis also important to make the
approach to he|p f|X any S|mU|at|On errors Slmulatlon Qs accurate as pOSS|bIe

and constrain uncertainties



Tuning NOVA simulation
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* Early on we discovered a significant anomaly in our ND data.
Including 2p2h/MEC significantly improved this discrepancy.

* We’re currently wrapping up our third iteration of oscillation analyses
and gearing up for our fourth. Each time our treatment of 2p2h has
grown more sophisticated.
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Brief history of 2p2h tuning in NOVA

* First analyses (late 2015):
* No 2p2h included (very large systematics covered discrepancies)



Brief history of 2p2h tuning in NOVA

* First analyses (late 2015):
* No 2p2h included (very large systematics covered discrepancies)

e Second analyses (2016):
* Dytman ‘empirical MEC’ model is included in GENIE and used by NOVA
* Momentum transfer distribution fit to ND data; energy transfer set to match QE
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* A 50% normalization uncertainty is taken
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Brief history of 2p2h tuning in NOVA

* First analyses (late 2015):
* No 2p2h included (very large systematics covered discrepancies)

e Second analyses (2016):
* Dytman ‘empirical MEC’ model is included in GENIE and used by NOVA
* Momentum transfer distribution fit to ND data; energy transfer set to match QE
* A 50% normalization uncertainty is taken

* Third analyses (2017 - ongoing, results by end of year):

* New 2p2h models added to GENIE (Valencia, used by other experiments and TEM),
but empirical MEC is still the best match to data

Energy transfer no longer set to QE, left as implemented in GENIE

Fitting the |q| distribution to ND data yields similar result as simple scaling
Result: central value tune is just GENIE empirical MEC * 1.2 normalization factor
Robust systematics added



Third analysis x-sec tune e
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1500

:_ ....... Actual QEqO
: : @ [ ____ Emp.MECq_— RES
 Will be used for upcoming analyses = 0ol R
AT sl B e e T Actual RES q,
e 2p2h: E
* Empirical MEC scaled up 20%, same result 500(-
as fitting | q| to ND data

T 1T

* New systematics: energy transfer shape,

5
LY.
T R SR SR T MR et it 1TSS

np/nn ratio, x-sec normalization 0

0 - E 1.5
True q, (GeV)
* DIS: O 3r
« Additional systematics for ‘transition = Nieves otal MEG (GENIE
region’ DIS, with W>1.7 GeV, and for >2 8 250 artini et al. MIEC (PRC 50, 06550
pion events, to cover anomalies in GENIE § - Megias et al. MEC (PRD 94, 093004)
. 2 ncertainty envelope
* RPA applied s | ey
: : o 150
* Non-res single m fix g F|
(a rXiv:1601.0 1888V3) | I SE— P
. . N 2 A V< N~ Green band
* Tuned simulation agrees within 2 s shows envelope
uncertainties |, we choose
R

16
E, (GeV)

\e]



Cross-section systematics

* We use a combination of GENIE standard and custom systematics

* Processes (> 50 knobs): * QE RPA:
* QE: reduced M,, vector form factor * Use_pfeSC/rilf)ti;)lr\71:)r§r(r)12I;.3(§ran
* 2p2h: g, shape, np/nn ratio, x-sec (arxiv.org/abs ' )

e Built in uncertainties

* RES RPA:

* Considered possible but never
calculated; use Q?-dependent QE

* RES: M,, M,
* DIS: Bodek-Yang parameters
custom 50% normalization

* Coh: My, Ry formulation a_pplied to RES events
* FSI (~20 knobs, standard GENIE): as a systematic
* hadronization, intranuclear * 2p2h: g, shape, nn/pn ratio, x-

rescattering sec E-dependent normalization



NOVA disappearance

e Brief summary of analysis (arXiv:1701.05891v2) :

e Cuts are applied to remove backgrounds:
* Containment ensures E reconstruction is possible
* NCremoved by requiring a clear muon track

e Cosmics are removed by putting track directions,
containment, hadronic activity and more into a BDT
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NOVA disappearance

e Brief summary of analysis (arXiv:1701.05891v2) :

e Cuts are applied to remove backgrounds:
* Containment ensures E reconstruction is possible
* NCremoved by requiring a clear muon track

* Cosmics are removed by putting track directions,
containment, hadronic activity and more into a BDT

4 102

10

* Energy is reconstructed by fitting the reco->true
shape from simulation

True Neutrino E - Reco Muon E (GeV)

. 1 _
Visible Hadronic E (GeV)
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NOVA disappearance
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Brief summary of analysis (arXiv:1701.05891v2) : E Tfedict'ton NOVA Normal Hierarchy
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e Containment ensures E reconstruction is possible » | ——Data :
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e Cosmics are removed by putting track directions, < i
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Energy is reconstructed by fitting the reco->true I < i
shape from simulation o .
o W15 —
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AmZ, (107 eV?)
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X-section uncertainty effects on disappearance

without extrapolation with extrapolation
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Appearance analysis

Signal isolated via new technique:
‘Convolutional Visual Network’ (CVN)

Further containment, cosmic cuts

Extrapolation more complicated; for
disappearance, measure v, in both ND
and FD. Here must measure v,inND to
predict v_signal in FD

Significant NC and intrinsic v,
background components; to measure in
ND requires a decomposition technique

Recent published result
(arXiv:1703.03328v2) found 33 events
over a predicted background of 8.2
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What’s next for NOVA?

 Beam currently off, but reached 700 kW. So far we’ve recorded:
e ~9e20 POT neutrino-mode data
e ~3.5e20 POT anti-neutrino-mode data

Getting more serious about x-section tuning! Dedicated sub-group; recently started new
combined neutrino / anti-neutrino mode tune

Some goals:

does applying RES RPA makes things agree better?

are DIS many-pion events under-produced in GENIE neutrino-mode?

is there a 2p2h tuning that works for both neutrinos and anti-neutrinos?
does anything look funny?

Double-check with GIBUU and NEUT, do extensive cross-checks
This tune will be used for joint neutrino/anti-neutrino analyses to be released in 2018
* Many direct x-section measurements also underway; see L Cremonesi’s talk yesterday



Conclusions

* Cross-section uncertainties are large and many, but end up as a sub-
dominant effect in our oscillation analyses. This may change as we get
more statistics and a better handle on our detector response!

* Functionally identical near/far detectors allow for easy extrapolation

* Cross-section tuning becoming more and more important. 2p2h and RPA
are both relatively new and there is still much to learn about them. As we
look more closely we find other areas where GENIE isn’t perfect as well.

* NOVA is stepping up our efforts to do comprehensive tuning

* New tuning with new 2p2h systematics ready for our next set of oscillation
results due out this year

* A combined neutrino/anti-neutrino x-sec tune in preparation for use in
2018 joint neutrino/anti-neutrino oscillation analyses
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Projections
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disappearance details
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