Mauro Mezzetto, Istituto Nazionale Fisica Nucleare, Padova

Future Outlook

Nufact2017, Uppsala, 25-30 September 2017

Apologies ...

... my record as crystal ball reader is just very poor

a) I worked full time in the 90's in the Nomad experiment at CERN looking for $v_{\mu} - v_{\tau}$ oscillations at $\delta m^2 > 10 \text{ eV}^2$.

However:

- At the time no guideline about the best strategy: scan sin²2 θ at δ m²>10 eV² or scan δ m² at sin²2 θ >0.1
- An entire generation of european neutrino physicists had been trained in Nomad and Chorus
- The Nomad result on QE cross section convinced the community that this cross section was not just a problem of fitting m_A
- Nomad (refurbished) and its "competitor" SK are now working together as close and far detector of T2K respectively
- ... not to mention Feldman-Cousins

... and

b) At Nufact '01 I presented performances of a SuperBeam configuration, arguing that to address leptonic CP violation was needed a setup where a WC detector 20 times bigger of SK integrated a 4MW beam for 10 years.

At Nufact '17 T2K presents a 2σ indication of CP violation having integrated roughly 500 times less v interactions (in terms of detector mass x run time x beam power). Btw T2K had been presented at Nufact '01 too, it was the 2nd or 3rd T2K presentation at an international conference.

What was missing (in the computation)?

- θ₁₃ happened to be maximal, in the allowed range (killing neutrino factories and beta beams)
- T2K fits maximal values of δ_{CP}
- At high θ_{13} reactors can measure its value at the percent level increasing very much the discovery power of accelerator experiments like T2K

What lesson can we take?

- The parameters measured by neutrino experiments can significantly change their strategy
- Sinergies between different experiments can be very powerful

Is something similar going to happen?

PTEP 2015 (2015) 4, 043C01 Let's take seriously T2K best fit at $\delta_{CP} = -\pi/2$ (both T2K and Nova improved detection efficiency in the meantime, SK also From ... presentation contributes) Normal δ_{CP} =3 π /2, sin² θ_{23} =0.403 **NOvA Simulation** $\Delta m_{22}^2 = 2.5 \times 10^{-3} eV^2$, $\sin^2 \theta_{12} = 0.022$ T2K **NOvA** NOvA joint $v_e + v_{\mu}$ 6 CP T2K+NOvA Max. mixing 5 Hierarchy Significance (σ) Octant $\Delta\chi^2$ CPV 3 90% 2 1 All projected beam intensiv and analysis improvements 2022 -150 -100 2018 2020 2024 -50 100 2016 0 50 150 Year True δ_{CP}(°)

By 2020-21 MH could be decided at 3σ and CPC excluded at 3σ

Focus on δ_{CP} precision rather than CPV discovery (MH precision doesn't matter)

Short term: Sterile Neutrinos

Check of LSND

The three liquids gigantic detectors are under way:

- Liquid scintillator: Juno and SNO+ are in construction
- Water: Hyper-Kamiokande selected as top project by Mext. And also IceCube Gen 2, Km3net/Orca
- Liquid Argon: **Dune** is approved and partially funded

Such a big effort and investment by thousands of physicists and several major funding agencies is the right recognition of the splendid results and great perspectives of neutrino physics

Schedules

2017 Far Site Construction Begins 2018 ProtoDUNEs at CERN 2021 Far Detector Installation Begins 2024 Physics Data Begins 2026 Neutrino Beam and Near **Detector Available**

Talk by M. Sorel

Project timeline

Talk by E. O' Sullivan

HK construction timeline

FY2018	FY2019	FY2020	FY2021	FY2022	FY2023	FY2024	FY2025
		C	onstruction	manageme	nt		
Licensing procedure	Access tu	nnel C	avern excav	vation	Tank lining	PMT sup	port & Illation
Preparator Geological survey	y construct Cavern fin	ion Appro	ach tunnel,	water room		Water syst constructi	em Water on filling
Prepara for exca	atory const vated rock	ruction disposal	Exca	avated rock	disposal at	Maruyama	
Tar	ık final desi	gn	Photo	sensor prod	luction		
				Photosens	or housing	production	
				Electr	onics produ	uction	

Data taking expected in 2026

Complementarity

- HK and Dune nicely complement their physics reach in neutrino oscillations (see f.i. arXiv:1501.03918)
- Juno can improve their sensitivity in precisely measuring solar parameters while HK and Dune can measure Δm_{ee}^2 for Juno
- The three liquids really complement each other in detecting SN neutrinos, proton decays, solar neutrinos, indirect DM searches, ...

Complementarity

To fully exploit the physics potential of your experiment you have to wish all the best to your «competitors», the flow chart here below illustrates a real case at best.

What Next

From André DE GOUVÊA opening talk

Ultimate Goal: Not Measure Parameters but Test the Formalism (Over-Constrain Parameter Space)

What we ultimately want to achieve:

From Alain Blondel «Concluding Remarks» talk at Nufact '16

Questions:

1. Will we want a neutrino factory after , say 10 years of operation of DUNE + HYPERK?

other phrasing:

How many years of running DUNE + HyperK will it take to match a neutrino factory?

2. Does neutrino factory bring qualitatively different discovery potential?

Example:

Testing Unitarity for the existence of mixing with other states (e.g. RH/sterile neutrinos)

-- N_v@ LEP tests unitarity at Ecm=90 GeV

-- different from test at eV scale because of possible intermediate scale of RH m asses.

What Next

I'm afraid I don't have clear answers to André and Alain questions, but we can formulate some general considerations:

After Dune and HK, detectors can't be improved very much and any significant progress of sensitivities can only be achieved through neutrino beams

> So we are back to the main focus (and great merit) of this conference serie: bring together theorists, neutrino physicists and accelerator experts

Statistics: ESSnuSB, IOTA, KEKB proton linac Systematics: Moment, DAEdALUS, Neutrino Factory, Beta Beams (nuSTORM, Enubet in the short time)

Proton drivers

Year 2000

Year 2017, Talk of C. Plostinar

ESSnuSB

Talk by M. Dracos **IPHC** Institut Pluridisciplinaire How to add a neutrino facility?

- The neutron program must not be affected and if possible synergetic modifications.
- Linac modifications: double the rate (14 Hz \rightarrow 28 Hz), from 4% duty cycle to 8%.
- Accumulator (C~400 m) needed to compress to few µs the 2.86 ms proton pulses, affordable by the magnetic horn (350 kA, power consumption, Joule effect)
 - H⁻ source (instead of protons),
 - space charge problems to be solved.
- ~300 MeV neutrinos.
- Target station (studied in EUROv).
- Underground detector (studied in LAGUNA).
- Short pulses (~µs) will also allow DAR experiments (as those proposed for SNS) using the neutron target.

Long term R&D

IOTA at FNAL, talk by B. Freemire

Systematics

Talk on systematics by D. Hadley

- The ultimate

 (optimistic) goal of HK
 and Dune is 3%
 systematics
- It's the value where statistical error equal systematics

Experiment	$v_e + \bar{v}_e$	1/√N	Ref.	
T2K (current)	74 + 7	12% + 40%	2.2×10 ²¹ POT	
NOvA (current)	33	17%	FERMILAB-PUB-17-065-ND	
NOvA (projected)	110 + 50	10% + 14%	arXiv:1409.7469 [hep-ex]	
T2K-I (projected)	150 + 50	8% + 14%	7.8×10 ²¹ POT, arXiv:1409.7469 [hep- ex]	
T2K-II	470 + 130	5% + 9%	20×10 ²¹ POT, arXiv1607.08004 [hep- ex]	
Hyper-K	2900 + 2700	2% + 2%	10 yrs 2-tank staged KEK Preprint 2016-21	
DUNE	1200 + 350	3% + 5%	3.5+3.5 yrs x 40kt @ 1.07 MW arXiv:1512.06148 [physics.ins-det]	

- A further generation of v experiments will require 1% systematic errors (3 times better!)
- This is almost impossible with conventional v beams due their (well known) intrinsic limitations

New concepts for neutrino beams are not for tomorrow, but the R&D should be fully supported since today

... in the meantime v_e cross sections

Early stages of a v factory like nuSTORM or tagged v beams a la ENUBET (funded by an ERC consolidator grant, talk by F. Pupilli) could measure v_e cross section at 1%

This cross section is difficult at close detectors because

- Well known flux-xsec degeneracy at conventional neutrino beams
- Low v_e fluxes at close detectors
- Large γ backgrounds from ν interactions around the close detectors

Systematics on the v_{e} flux

ENUBET, Talk by F. Pupilli Positron tagging eliminates the most important contributions. Assessing in detail the viability of the 1% systematics on the flux is one of the final goals of ENUBET. Full analysis is being setup profiting from a detailed simulation of the beamline, the tagger and inputs from test beams.

Source of uncertainty	Estimate			
statistical error	<1% (10 ⁴ v _e ^{CC})			
kaon production yield	irrelevant (positron tag)			
number of integrated PoT	irrelevant (positron tag)			
secondary transport efficiency	irrelevant (positron tag)			
branching ratios	negligible + only enter in bkg estimation			
3-body kinematics and mass	<0.1%			
phase space at the entrance	to be checked with low intensity pion runs			
v_e from μ -decay	constrain μ from K by the tagger and μ from π by low intensity runs			
e/π separation	being checked directly at test beams			

Congratulations to the organizers of this XIX edition of Nufact

