
Reactor neutrino
results and prospects

Zeyuan Yu

Institute of High Energy Physics

Sep. 26, 2017

NUFACT 2017, 25 - 30 September,  Uppsala University 



Contents

• Reactor neutrino

• Ongoing experiments

• Anomalies

• The future

• Summary

2



Reactor: a powerful νe source

• Pure and powerful νe source

• Averaged 6 νe per fission

• 6*1020 νe /sec/3GWth
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• Major detection method

• Inverse Beta Decay: νe + p  e+ + n

• Distinctive coincidence signature



Rich physics results
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1950s: Reines and 
Cowan, discovery 
of neutrino

1980s: Bugey

2000s: KamLAND θ12, δm2 2010s: Daya Bay, etc. θ13

1990s: Palo 
Verde, CHOOZ

• Similar detection methods

• Inverse Beta Decay

• Liquid scintillator + Photomultiplier Tubes



Neutrino oscillation

• Neutrinos are produced and detected by weak interactions as flavor eigenstates, 
but propagate in vacuum as mass eigenstates
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• Only an upper limit for sin22θ13 around 
2003

• θ13 is linked to the possibility of observing CP 
violation at lepton sector

• “Tell me θ13!” – S. Glashow

PRD 62, 072002



How to measure θ13

• Look for reactor νe disappearance at 
short baselines (~ 1 to 2 km)

• Clean in physics

• Only related to θ13.

• No relation with δCP and matter effect 
compared to accelerator experiments

• Relative measurement 

• Compare νe flux and spectrum at near and 
far locations

• Cancel most of the detector and reactor 
related systematics
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Ongoing reactor experiments
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Daya Bay (China) Double Chooz (France) RENO (South Korea)

Reactor power

(GWth)

Overburden

near/far (m.w.e.)

nGd target mass 

at far site (tons)

Status of data 

taking

Daya Bay 17.4 270/950 80 2011-2020

Double Chooz 8.6 80/300 8.3 2011-2017

RENO 16.4 90/440 15.4 2011-2021 (?)



Detectors

Similar detection technologies

• Three-zone νe detectors

• Surrounded by water 
Cherenkov detectors

• Veto muons

• Shield natural radioactivity 
and neutrons
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Daya Bay



θ13 is large
• 2011: T2K, MINOS and Double Chooz saw indications of non-zero θ13

• 2012: Daya Bay obtained unambiguous evidence of non-zero θ13 (> 5σ). RENO confirmed 

• Now: θ13 has been the best known angle in the PMNS matrix

• All experiments see clear disappearance signature, consistent with standard 
oscillation
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DC @ CERN seminar 2016RENO @ TAUP 2017 Daya Bay @ Neutrino 2016



Latest results

• θ13: reactor experiments give the 
most precise measurement 

• Key input to the δCP determination in 
current generation accelerator 
experiments

• Δm32
2: consistent results between 

• MeV scale reactor experiments 

• GeV scale accelerator and atmospheric 
ones

• Beauty of nature
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Plots from M. Gonchar



Prospects of ongoing experiments

• Double Chooz

• Data taking to end of 2017

• Reduce the largest systematics: proton 
number

• Daya Bay

• Data taking to 2020

• Better than 3% precision of sin22θ13 and 
|Δm2

ee|

• Better understanding to systematics and LS 
technical studies

• RENO

• Plan to 2018 with possible extension to 2021

11



Reactor neutrino “anomalies”

• Compare the measurements to 
model predictions
• νe flux anomaly

• νe spectrum bump

• Fuel evolution
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Anomaly: Who am I ?

A discovery or a mistake?



Reactor neutrino predictions

• Summation method: 10% uncertainty

• Sum over the fission products’ νe spectra from 
the nuclear database

• 235U, 239Pu, 241Pu: conversion method, 
~2.7% uncertainty

• Convert ILL’s measured beta spectra to νe 

ones with virtual beta-decay branches

• ILL + Vogel model since 1980s

• Predicted flux was consistent with Bugey-3 and 
other short baseline experiments

• Huber + Mueller Model

• In 2011, two conversion re-analyses increased 
the predicted flux by ~5%

• Reactor Antineutrino Anomaly
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Neutrino flux anomaly

• Daya Bay and RENO obtained consistent flux results with those 
from previous short baseline experiments

• How to explain the anomaly?
• Experimental systematics? (Unlikely)

• Sterile neutrino? Problem in flux prediction? 
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Daya Bay/(Huber+Mueller)

Preliminary

RENO/(Huber+Mueller)



Neutrino spectrum

• In 2014, all three experiments saw a bump in (4 – 6 MeV) prompt energy region
• Different reactor fuels; different 238U predictions between DC and DYB/RENO
• Can’t be explained by detector response or sterile neutrino oscillation

• Implication: if uncertainty of the predicted shape is larger than expected, the same 
might be true for the flux
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RENO arXiv:1610.04326DYB @ Neutrino 2016 DC @ Neutrino 2016



Neutrino spectrum

• No definitive answer to the bump yet

• Uncertainty of the conversion 
method is probably underestimated

• It assumes that the shapes of all beta-
decays are known

• 30% of the decays are first forbidden, 
thus the assumption is not justified

• 5% uncertainty is more realistic

• Some other explanations

• Fast neutron fission of 238U? (Hayes)
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Fuel evolution

• Recently, Daya Bay studied the neutrino flux and shape changes with 
reactor fuel evolution

• Results suggest 235U is the main contributor to the Reactor 
Antineutrino Flux Anomaly

• Sterile neutrino as the sole cause of RAA is disfavored by 2.8σ
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Fuel evolution

• Some complicated scenarios still allowed
• For example, larger 239Pu flux with sterile neutrino suggested by C. Giunti

• Whatever the case, uncertainties in flux predictions are largely 
underestimated

• The coming HEU (more than 94% ν from 235U) reactor experiments are 
critical for model-independent tests
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Combined fit of the DYB evolution and global reactor 

rates, by C. Giunti et al, arXiv:1708.01133

Plot from L. Bryce



Searching for sterile neutrino

• The Reactor Antineutrino Anomaly problem is still open

• More inputs
• Light sterile neutrino search at Daya Bay and RENO (sub-eV scale)

• Very short baseline experiments (eV scale). Most of them use HEU reactors
• PROSPECT, Solid, NEOS, etc. See Marco’s talk at Sep. 28

19

New experiments



Searching for sterile neutrino
• The existence of sterile neutrino would introduce an additional spectral distortion

• Daya Bay, RENO and NEOS set limits to sin22θ14 at different |Δm2
41| region

• A combined analysis between DYB, MINOS and Bugey-3 excluded the MiniBooNE and 
LSND allowed parameter space at Δm2

41<0.8 eV2

20Phys. Rev. Lett. 118, 121802 (2017)



Future experiments
Thanks to the large θ13!

• The next generation of reactor experiments aims to solve the neutrino 
mass hierarchy problem
• An unprecedentedly large and precise detector to distinguish relative shape 

difference from different MH
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sin22θ13



JUNO
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Yangjiang NPP

Taishan NPP

Daya Bay 

NPP

Huizhou

NPP

Lufeng

NPP

53 km

53 km

Hong Kong

Macau

Guang Zhou

Shen Zhen

Zhu Hai

2.5 h drive

A similar proposal RENO-50 at Korea has been abandoned 

JUNO

DYB



JUNO physics

• Achieve sensitivity to MH at 3σ with a six years running

• Larger than 4σ with 1% precision |Δm2
μμ| input

• A multi-purpose detector with rich physics potentials

• Precise measurements of sinθ12 and Δm2
21, geo-neutrino, supernova neutrino, etc.
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Registered events for a supernova at 10 kpc

See Barbara’s talk at Sep. 25 for details



JUNO detector
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Till now, received 

3k 20’’ PMTs.

Under mass 

testing. 

Replaced the GdLS in 

DYB AD1 with JUNO 

LS for light yield and 

radio-purity test.
See Pedro’s talk at Sep. 25 for details



JUNO schedule
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Summary

• Reactor plays an important role in the neutrino physics

• From the discovery of neutrino to the precise determination of θ13

• Anomalies of reactor neutrinos require better predictions

• Current data suggest the anomalies are probably due to predictions

• Very short baseline experiments are critical

• The next generation experiment, JUNO, has a decent probability 
of solving the mass hierarchy problem in the next 10 years

Thanks for your attention!
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