

Reactor neutrino results and prospects

Zeyuan Yu Institute of High Energy Physics Sep. 26, 2017

NUFACT 2017, 25 - 30 September, Uppsala University

Contents

- Reactor neutrino
- Ongoing experiments
- Anomalies
- The future
- Summary

Reactor: a powerful \overline{v}_e source

• Pure and powerful \overline{v}_e source

- Averaged 6 \overline{v}_e per fission
- $6*10^{20} \overline{v}_e / \text{sec}/3\text{GW}_{\text{th}}$

• Major detection method

- Inverse Beta Decay: $\overline{v}_e + p \rightarrow e^+ + n$
- Distinctive coincidence signature

Rich physics results

- Similar detection methods
 - Inverse Beta Decay
 - Liquid scintillator + Photomultiplier Tubes

Neutrino oscillation

• Neutrinos are **produced and detected** by weak interactions as **flavor eigenstates**, but **propagate** in vacuum as **mass eigenstates**

How to measure θ_{13}

- Look for reactor \overline{v}_e disappearance at short baselines (~ 1 to 2 km)
- Clean in physics
 - Only related to θ_{13} .
 - No relation with δ_{CP} and matter effect compared to accelerator experiments

• Relative measurement

- Compare $\overline{\nu}_e$ flux and spectrum at near and far locations
- Cancel most of the detector and reactor related systematics

Ongoing reactor experiments

Daya Bay (China)

Double Chooz (France)

RENO (South Korea)

	Reactor power (GW _{th})	Overburden near/far (m.w.e.)	nGd target mass at far site (tons)	Status of data taking
Daya Bay	17.4	270/950	80	2011-2020
Double Chooz	8.6	80/300	8.3	2011-2017
RENO	16.4	90/440	15.4	2011-2021 (?)

Detectors

Similar detection technologies

- Three-zone \overline{v}_{e} detectors
- Surrounded by water Cherenkov detectors
 - Veto muons
 - Shield natural radioactivity and neutrons

Daya Bay

θ_{13} is large

- 2011: T2K, MINOS and Double Chooz saw indications of non-zero θ_{13}
- 2012: Daya Bay obtained unambiguous evidence of non-zero θ_{13} (> 5 σ). RENO confirmed
- Now: θ_{13} has been the best known angle in the PMNS matrix
- All experiments see clear disappearance signature, consistent with standard oscillation

Latest results

• θ_{13} : reactor experiments give the most precise measurement

- Key input to the δ_{CP} determination in current generation accelerator experiments
- Δm_{32}^2 : consistent results between
 - MeV scale reactor experiments
 - GeV scale accelerator and atmospheric ones
 - Beauty of nature

Prospects of ongoing experiments

Double Chooz

- Data taking to end of 2017
- Reduce the largest systematics: proton number

• Daya Bay

- Data taking to 2020
- Better than 3% precision of $\sin^2 2\theta_{13}$ and $|\Delta m^2_{ee}|$
- Better understanding to systematics and LS technical studies

• RENO

• Plan to 2018 with possible extension to 2021

Reactor neutrino "anomalies"

- Compare the measurements to model predictions
 - \overline{v}_{e} flux anomaly
 - \bar{v}_e spectrum bump
 - Fuel evolution

Anomaly: Who am I ? A discovery or a mistake?

Reactor neutrino predictions

• Summation method: 10% uncertainty

- Sum over the fission products' \overline{v}_e spectra from the nuclear database

²³⁵U, ²³⁹Pu, ²⁴¹Pu: conversion method, ~2.7% uncertainty

- Convert ILL's measured beta spectra to \overline{v}_e ones with virtual beta-decay branches
- ILL + Vogel model since 1980s
 - Predicted flux was consistent with Bugey-3 and other short baseline experiments
- Huber + Mueller Model
 - In 2011, two conversion re-analyses increased the predicted flux by ~5%
- Reactor Antineutrino Anomaly

Neutrino flux anomaly

- Daya Bay and RENO obtained consistent flux results with those from previous short baseline experiments
- How to explain the anomaly?
 - Experimental systematics? (Unlikely)
 - Sterile neutrino? Problem in flux prediction?

Neutrino spectrum

DYB @ Neutrino 2016

RENO arXiv:1610.04326

DC @ Neutrino 2016

- In 2014, all three experiments saw a bump in (4 6 MeV) prompt energy region
 - Different reactor fuels; different ²³⁸U predictions between DC and DYB/RENO
 - Can't be explained by detector response or sterile neutrino oscillation
- **Implication**: if uncertainty of the predicted shape is larger than expected, the same might be true for the flux

Neutrino spectrum

- No definitive answer to the bump yet
- Uncertainty of the conversion method is probably underestimated
 - It assumes that the shapes of all betadecays are known
 - 30% of the decays are first forbidden, thus the assumption is not justified
 - 5% uncertainty is more realistic
- Some other explanations
 - Fast neutron fission of ²³⁸U? (Hayes)

Ratio of neutrino spectrum to electron spectrum by assuming different forbidden shape factors

A. Hayes et al, PRL 112, 202501 (2014).

Fuel evolution

- Recently, Daya Bay studied the neutrino flux and shape changes with reactor fuel evolution
- Results suggest ²³⁵U is the main contributor to the Reactor Antineutrino Flux Anomaly
- Sterile neutrino as the sole cause of RAA is disfavored by 2.8σ

Fuel evolution

- Some complicated scenarios still allowed
 - For example, larger ²³⁹Pu flux with sterile neutrino suggested by C. Giunti
 - Whatever the case, uncertainties in flux predictions are largely underestimated
- The coming HEU (more than 94% v from ²³⁵U) reactor experiments are critical for model-independent tests

Combined fit of the DYB evolution and global reactor rates, by C. Giunti et al, arXiv:1708.01133

	235	235 + 239	\mathbf{OSC}	235 + OSC	239+OSC
$\chi^2_{ m min}$	25.3	24.8	23.0	20.2	17.5
NDF	32	31	31	30	30
GoF	79%	78%	85%	91%	100%
Δm^2_{41}	_	_	0.48	0.48	0.48
$\sin^2 2\vartheta_{ee}$	_	_	0.14	0.11	0.15
r_{235}	0.934	0.934	_	0.987	_
r_{239}	_	0.970	-	_	1.099

18

Searching for sterile neutrino

- The Reactor Antineutrino Anomaly problem is still open
- More inputs
 - Light sterile neutrino search at Daya Bay and RENO (sub-eV scale)
 - Very short baseline experiments (eV scale). Most of them use HEU reactors
 - PROSPECT, Solid, NEOS, etc. See Marco's talk at Sep. 28

Searching for sterile neutrino

- The existence of sterile neutrino would introduce an additional spectral distortion
- Daya Bay, RENO and NEOS set limits to $\sin^2 2\theta_{14}$ at different $|\Delta m^2_{41}|$ region
- A combined analysis between DYB, MINOS and Bugey-3 excluded the MiniBooNE and LSND allowed parameter space at $\Delta m_{41}^2 < 0.8 \text{ eV}^2$

Future experiments

Thanks to the large θ_{13} !

- The next generation of reactor experiments aims to solve the neutrino mass hierarchy problem
 - An unprecedentedly large and precise detector to distinguish relative shape difference from different MH

21

JUNO

A similar proposal RENO-50 at Korea has been abandoned

JUNO physics

- Achieve sensitivity to MH at 3σ with a six years running
 - Larger than 4σ with 1% precision $|\Delta m^2_{\mu\mu}|$ input
- A multi-purpose detector with rich physics potentials
 - Precise measurements of $\sin\theta_{12}$ and Δm_{21}^2 , geo-neutrino, supernova neutrino, etc.

Registered events for a supernova at 10 kpc

Channel	Type	Events for different $\langle E_{\nu} \rangle$ values			
Channel		$12 \mathrm{MeV}$	$14 { m MeV}$	$16 { m MeV}$	
$\overline{\nu_e + p \to e^+ + n}$	$\mathbf{C}\mathbf{C}$	$4.3 imes 10^3$	$5.0 imes 10^3$	$5.7 imes 10^3$	
$\nu + p \rightarrow \nu + p$	NC	$0.6 imes 10^3$	$1.2 imes 10^3$	$2.0 imes 10^3$	
$\nu + e \rightarrow \nu + e$	\mathbf{ES}	$3.6 imes10^2$	$3.6 imes10^2$	$3.6 imes10^2$	
$\nu + \ ^{12}\mathrm{C} \rightarrow \nu + \ ^{12}\mathrm{C}^*$	NC	$1.7 imes 10^2$	$3.2 imes10^2$	$5.2 imes 10^2$	
$\nu_e + {}^{12}\mathrm{C} \rightarrow e^- + {}^{12}\mathrm{N}$	$\mathbf{C}\mathbf{C}$	$0.5 imes 10^2$	$0.9 imes10^2$	$1.6 imes 10^2$	
$\overline{\nu}_e + {}^{12}\mathrm{C} \rightarrow e^+ + {}^{12}\mathrm{B}$	$\mathbf{C}\mathbf{C}$	$0.6 imes 10^2$	$1.1 imes 10^2$	$1.6 imes 10^2$	

See Barbara's talk at Sep. 25 for details

JUNO detector

JUNO schedule

Summary

- Reactor plays an important role in the neutrino physics
 - From the discovery of neutrino to the precise determination of θ_{13}
- Anomalies of reactor neutrinos require better predictions
 - Current data suggest the anomalies are probably due to predictions
 - Very short baseline experiments are critical
- The next generation experiment, JUNO, has a decent probability of solving the mass hierarchy problem in the next 10 years

Thanks for your attention!