Uppsala, 26.09.2017

Global neutrino oscillation fits

University of Bari & INFN Antonio Palazzo **NuFact 2017**

26/09/17

Outline

Introduction

3-flavor fit

4-flavor fit

Conclusions

Introduction

Outstanding progress in v physics in ~ 20 years

3-flavor scheme now established as the standard framework...

The 3v mass spectrum

The 3v mixing matrix

$$|\nu_{\alpha}\rangle = \sum_{i=1}^{3} U_{\alpha i}^{*} |\nu_{i}\rangle \qquad U = O_{23} \Gamma_{\delta} O_{13} \Gamma_{\delta}^{\dagger} O_{12}$$

$$\begin{split} \Gamma_{\delta} &= \operatorname{diag}(1, 1, e^{+i\delta}) & \operatorname{Dirac} \operatorname{CP-violating phase } \delta \\ \delta &\in [0, 2\pi] & U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \\ \theta_{23} \sim 45^{\circ} & \theta_{13} \sim 9^{\circ} & \theta_{12} \sim 34^{\circ} \end{split}$$

Three non-zero θ_{ij} : Way open to CPV searches...

CPV is a genuine 3-flavor effect

$$\Delta_{ij} = \frac{\Delta m_{ij}^{2} L}{4E} \begin{bmatrix} A_{\alpha\beta}^{CP} \equiv P(\nu_{\alpha} \to \nu_{\beta}) - P(\bar{\nu}_{\alpha} \to \bar{\nu}_{\beta}) \end{bmatrix}$$
$$\begin{bmatrix} A_{\alpha\beta}^{CP} = -16J_{\alpha\beta}^{12} \sin \Delta_{21} \sin \Delta_{13} \sin \Delta_{32} \end{bmatrix}$$
$$\begin{bmatrix} J_{\alpha\beta}^{ij} \equiv Im \left[U_{\alpha i} U_{\beta j} U_{\alpha j}^{*} U_{\beta i}^{*} \right] \equiv J \sum_{\gamma=e,\mu,\tau} \epsilon_{\alpha\beta\gamma} \sum_{k=1,2,3} \epsilon_{ijk} \end{bmatrix}$$

J is parameterization independent (Jarlskog invariant)

In the standard parameterization:

$$J = \frac{1}{8} \sin 2\theta_{12} \sin 2\theta_{23} \sin 2\theta_{13} \cos \theta_{13} \sin \delta$$

- No degenerate
$$(v_{i,}v_{j})$$

- No $\theta_{ij} = (0, \pi/2)$
- $\delta \neq (0, \pi)$ (hints)

Quarks & Leptons vis-à-vis

In the neutrino sector the precision is much lower than that reached for quarks (albeit is quickly increasing!)

However, chances to discover a large CPV are much bigger...

$$J = \frac{1}{8}\sin 2\theta_{12}\sin 2\theta_{23}\sin 2\theta_{13}\cos \theta_{13}\sin \delta$$

- J_{PMNS} may be as large as (3×10^{-2})

Antonio Palazzo, UNIBA & INFN

Implications of a large J_{PMNS}

While it would not prove the leptogenesis mechanism it may have an impact on it

Pascoli, Petcov, Riotto PRD 75 083511 (2007)

The sole δ may suffice to produce the observed amount of baryon asymmetry provided $|\sin\theta_{13} \sin\delta| > 0.11$ ~ 0.15 / - -1.0 (see later)

Y_B in a minimal seesaw model (M~GeV)

Prediction depends also on the value of δ

3-flavor fit

Global 3v oscillation analysis (2017)

Capozzi, Di Valentino, Lisi, Marrone, Melchiorri, A.P, PRD 95, 096014 (2017) arXiv:1703.04471 NO: Normal Ordering IO: Inverted Ordering

~ 2o preference for NO

Preference for $\delta \in [\pi, 2\pi] (\sin \delta < 0)$

Octant of θ₂₃ - lower in NO - no preference in IO

Estimates of the 3-flavor parameters

Parameter	Ordering	Best fit	1σ range	2σ range	3σ range
$\delta m^2/10^{-5} \ \mathrm{eV}^2$	NO, IO, Any	7.37	7.21 - 7.54	7.07 - 7.73	6.93 - 7.96
$\sin^2 \theta_{12} / 10^{-1}$	NO, IO, Any	2.97	2.81 - 3.14	2.65 - 3.34	2.50 - 3.54
$ \Delta m^2 /10^{-3} \text{ eV}^2$	NO	2.525	2.495 - 2.567	2.454 - 2.606	2.411 - 2.646
	IO	2.505	2.473 - 2.539	2.430 - 2.582	2.390 - 2.624
	Any	2.525	2.495 - 2.567	2.454 - 2.606	2.411 - 2.646
$\sin^2 \theta_{13} / 10^{-2}$	NO	2.15	2.08-2.22	1.99 - 2.31	1.90 - 2.40
	IO	2.16	2.07-2.24	1.98 - 2.33	1.90 - 2.42
	Any	2.15	2.08-2.22	1.99-2.31	1.90-2.40
$\sin^2 \theta_{23} / 10^{-1}$	NO	4.25	4.10 - 4.46	3.95-4.70	3.81 - 6.15
	IO	5.89	$4.17-4.48\oplus5.67-6.05$	$3.99 - 4.83 \oplus 5.33 - 6.21$	3.84 - 6.36
	Any	4.25	4.10 - 4.46	$3.95-4.70\oplus5.75-6.00$	3.81 - 6.26
δ/π	NO	1.38	1.18 - 1.61	1.00 - 1.90	$0 - 0.17 \oplus 0.76 - 2$
	IO	1.31	1.12 - 1.62	0.92-1.88	$0 - 0.15 \oplus 0.69 - 2$
	Any	1.38	1.18 - 1.61	1.00 - 1.90	$0 - 0.17 \oplus 0.76 - 2$

Best estimates and fractional errors (defined as 1/6 of $\pm 3\sigma$ ranges):

δ m²/eV 2	~	7.4 x 10 ⁻⁵	±2.3%
∆ m²/eV ²	~	2.5 x 10 ⁻³	±1.6%
sin²θ ₁₂	~	0.30	±5.8%
$sin^2\theta_{13}$	~	0.022	±4.0%
$\sin^2\theta_{23}$	~	0.5	±9.0%

T2K and NOvA biprobability plots

Numerical analysis of T2K and NOvA

A.P., PLB 757 142-147 (2016) arXiv: 1509.03148

- Preference for CPV in T2K+NO $_{\rm V}A$
- Reinforced when T2K+NOvA are combined with Reactors
- IH slightly disfavored because of LBL-REA tension

Latest T2K data confirm the trend

How the hints of CPV & MH arise (2) Atmy data fit w/ fixed θ_{13}

•Mass hierarchy: $\Delta \chi^2 = \chi^2_{NH} - \chi^2_{IH} = -4.3$ (-3.1 expected)

M. Shiozawa @ NeuTel 2017

CPV indication reinforced for increasingly rich data set

18

A déjà vu: First hints of θ_{13} >0

Fogli, Lisi, Marrone, A.P., Rotunno, Phys. Rev. Lett. (2008)

Also in that case we had two weak but converging hints

The same story may be repeated with δ !

4-flavor fit

Beyond the standard picture

Many extensions of the Standard Model predict new effects in neutrino oscillations

An incomplete list:

- Light sterile neutrinos
 - Non standard neutrino interactions (NSI)
 - Non unitarity of the PMNS matrix
 - Long-range forces
 - Lorentz and CPT violations
 - Quantum decoherence ...

Light sterile neutrinos

Wide interest in the scientific community

K. N. Abazaijan^{a,1} M. A. Acero,² S. K. Agarwalla,³ A. A. Aguilar-Arevalo,² C. H. Albright,^{4,5} S. Antusch.⁶ C. A. Argüelles,⁷ A. B. Balantekin,⁸ G. Barenboim^a,³ V. Barger,⁸ P. Bernardini,⁹ F. Bezrukov,¹⁰ O. E. Bjaelde,¹¹ S. A. Bogacz,¹² N. S. Bowden,¹³ A. Boyarsky,¹⁴ A. Bravar,¹⁵ D. Bravo Berguño,¹⁶ S. J. Brice,⁵ A. D. Bross,⁵ B. Caccianiga,¹⁷ F. Cavanna,^{18,19} E. J. Chun,²⁰ B. T. Cleveland,²¹ A. P. Collin,²² P. Coloma,¹⁶ J. M. Conrad,²³ M. Cribier,²² A. S. Cucoanes,²⁴ J. C. D'Olivo,² S. Das,²⁵ A. de Gouvêa,²⁶ A. V. Derbin,²⁷ R. Dharmapalan,²⁸ J. S. Diaz,²⁹ X. J. Ding,¹⁶ Z. Djurcic,³⁰ A. Donini,^{31,3} D. Duchesneau,³² H. Ejiri,³³ S. R. Elliott,³⁴ D. J. Ernst,³⁵ A. Esmaili,³⁶ J. J. Evans,^{37,38} E. Fernandez-Martinez,³⁹ E. Figueroa-Feliciano,²³ B. T. Fleming^a,¹⁸ J. A. Formaggio^a,²³ D. Franco,⁴⁰ J. Gaffiot,²² R. Gandhi,⁴¹ Y. Gao,⁴² G. T. Garvey, ³⁴ V. N. Gavrin, ⁴³ P. Ghoshal, ⁴¹ D. Gibin, ⁴⁴ C. Giunti, ⁴⁵ S. N. Gninenko, ⁴³ V. V. Gorbachev,⁴³ D. S. Gorbunov,⁴³ R. Guenette,¹⁸ A. Guglielmi,⁴⁴ F. Halzen,^{46,8} J. Hamann,¹¹ S. Hannestad,¹¹ W. Haxton,^{47,48} K. M. Heeger,⁸ R. Henning,^{49,50} P. Hernandez,³ P. Huber^b, ¹⁶ W. Huelsnitz, ^{34,51} A. Ianni, ⁵² T. V. Ibragimova, ⁴³ Y. Karadzhov, ¹⁵ G. Karagiorgi, ⁵² G. Keefer,¹³ Y. D. Kim,⁵⁴ J. Kopp^a,⁵ V. N. Kornoukhov,⁵⁵ A. Kusenko,^{56,57} P. Kyberd,⁵⁸ P. Langacker, 59 Th. Lasserre^a, 22, 40 M. Laveder, 60 A. Letourneau, 22 D. Lhuillier, 22 Y. F. Li, 61 M. Lindner,⁶² J. M. Link^b,¹⁶ B. L. Littlejohn,⁸ P. Lombardi,¹⁷ K. Long,⁶³ J. Lopez-Pavon,⁶⁴ W. C. Louis^a,³⁴ L. Ludhova,¹⁷ J. D. Lykken,⁵ P. A. N. Machado,^{65,66} M. Maltoni,³¹ W. A. Mann,⁶⁷ D. Marfatia,⁶⁸ C. Mariani,^{53, 16} V. A. Matveev,^{43, 69} N. E. Mavromatos,^{70, 39} A. Melchiorri,⁷¹ D. Meloni,⁷² O. Mena,³ G. Mention,²² A. Merle,⁷³ E. Meroni,¹⁷ M. Mezzetto,⁴⁴ G. B. Mills,³⁴ D. Minic,¹⁶ L. Miramonti,¹⁷ D. Mohapatra,¹⁶ R. N. Mohapatra,⁵¹ C. Montanari,⁷⁴ Y. Mori,⁷⁵ Th. A. Mueller,⁷⁶ H. P. Mumm,⁷⁷ V. Muratova,²⁷ A. E. Nelson,⁷⁸ J. S. Nico,⁷⁷ E. Noah,¹⁵ J. Nowak,⁷⁹ O. Yu. Smirnov,⁶⁹ M. Obolensky,⁴⁰ S. Pakvasa,⁸⁰ O. Palamara,^{18,52} M. Pallavicini,⁸¹ S. Pascoli,⁸² L. Patrizii,⁸³ Z. Pavlovic,³⁴ O. L. G. Peres,³⁶ H. Pessard,³² F. Pietropaolo,⁴⁴ M. L. Pitt,¹⁶ M. Popovic,⁵ J. Pradler,⁸⁴ G. Ranucci,¹⁷ H. Ray,⁸⁵ S. Razzaque,⁸⁶ B. Rebel,⁵ R. G. H. Robertson,^{87,78} W. Rodejohann^a,⁶² S. D. Rountree,¹⁶ C. Rubbia,^{39,52} O. Ruchayskiy,³⁹ P. R. Sala,¹⁷ K. Scholberg,⁸⁸ T. Schwetz^a,⁶² M. H. Shaevitz,⁵³ M. Shaposhnikov,⁸⁹ R. Shrock,⁹⁰ S. Simone,⁹¹ M. Skorokhvatov,⁹² M. Sorel,³ A. Sousa,⁹³ D. N. Spergel,⁹⁴ J. Spitz,²³ L. Stanco,⁴⁴ I. Stancu,²⁸ A. Suzuki,⁹⁵ T. Takeuchi,¹⁶ I. Tamborra,⁹⁶ J. Tang,^{97,98} G. Testera,⁸¹ X. C. Tian,⁹⁹ A. Tonazzo,⁴⁰ C. D. Tunnell,¹⁰⁰ R. G. Van de Water,³⁴ L. Verde,¹⁰¹ E. P. Veretenkin,⁴³ C. Vignoli,⁵² M. Vivier,²² R. B. Vogelaar,¹⁶ M. O. Wascko,⁶³ J. F. Wilkerson,^{49,102} W. Winter,⁹⁷ Y. Y. Y. Wong^a,²⁵ T. T. Yanagida,⁵⁷ O. Yasuda,¹⁰³ M. Yeh,¹⁰⁴ F. Yermia,²⁴ Z. W. Yokley,¹⁶ G. P. Zeller,⁵ L. Zhan,⁶¹ and H. Zhang⁶²

Light Sterile Neutrinos: A White Paper

¹University of California, Irvine

²Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México

³Instituto de Fisica Corpuscular, CSIC and Universidad de Valencia

⁴Northern Illinois University

⁵Fermi National Accelerator Laboratory

⁶University of Basel

^aSection editor

^bEditor and corresponding author (pahuber@vt.edu and jmlink@vt.edu)

arXiv:1204.5379v1 [hep-ph] 18 Apr 2012

How to enlarge the 3-flavor scheme

At LBL the effective 2-flavor SBL description is no more valid and calculations should be done in the 3+1 (or $3+N_s$) scheme

1) The SBL accelerator anomalies

(unexplained $\nu_{\rm e}$ appearance in a $\nu_{\rm u}$ beam)

2) The reactor and gallium anomalies

(unexplained v_e disappearance)

Mention et al. arXiv:1101:2755 [hep-ex] SAGE coll., PRC 73 (2006) 045805

Warning: both are mere normalization issues The culprit may be hidden in unknown systematics

3) NEOS: a new hint of sterile neutrinos?

NEOS arXiv:1610:05134

Hanbit Nuclear Power Complex, Korea

Detector: 1 ton Gd-loaded liquid scintillator 24 m from the reactor core

Daya-Bay absolute spectrum used as a normalization

Oscillating pattern visible after normalization

Global SBL data fit in the 3+1 scheme

The smoking gun

Observation of the oscillation pattern at SBL experiments Many projects are under consideration But sterile neutrinos are not just a SBL "affair"...

An intrinsic limitation of SBL

At SBL atm/sol oscillations are negligible

$$\frac{L}{E} \sim \frac{m}{\text{MeV}} \qquad \qquad \Delta_{12} \simeq 0 \\ \Delta_{13} \simeq 0 \qquad \qquad \Delta_{ij} = \frac{\Delta m^2_{ij} L}{4E}$$

Impossible to observe phenomena of interference between the new frequency ($\Delta_{14} \sim 1$) and atm/sol ones

This is relevant because we need to observe such phenomena in order to measure the new CP-phases induced by sterile neutrinos

But we have LBL, which are sensitive interferometers

LBL Experiments: T2K & NOvA

LBL transition probability in 3-flavor

$$P_{\nu_{\mu} \rightarrow \nu_{\mu}}^{3\nu} = P^{\text{ATM}} + P^{\text{SOL}} + P^{\text{INT}}$$

in vacuum:

$$P^{\text{ATM}} = 4s_{23}^{2}s_{13}^{2}\sin^{2}\Delta$$

$$P^{\text{SOL}} = 4c_{12}^{2}c_{23}^{2}s_{12}^{2}(\alpha\Delta)^{2}$$

$$P^{\text{INT}} = 8s_{23}s_{13}c_{12}c_{23}s_{12}(\alpha\Delta) \sin\Delta\cos(\Delta (+\delta_{CP}))$$

$$\Delta = \frac{\Delta m_{31}^{2}L}{4E}, \quad \alpha = \frac{\Delta m_{21}^{2}}{\Delta m_{31}^{2}} \qquad \Delta \sim \pi/2$$

$$\alpha \sim 0.03$$

$$P^{\text{ATM}} \text{ leading } \Rightarrow \theta_{13} > 0$$

$$P^{\text{INT}} \text{ subleading } \Rightarrow \text{ dependency on } \delta$$

$$P^{\text{SOL}} \text{ negligible}$$

$$Matter \text{ effects break}$$

$$\text{NH-IH degeneracy}$$

$$P^{\text{ATM}} = \frac{1}{2} \sum_{j=1}^{2} \sum_{l=1}^{2} \sum_{j=1}^{2} \sum_{j=1}^{2} \sum_{l=1}^{2} \sum_{j=1}^{2} \sum_{j=1}^{2} \sum_{l=1}^{2} \sum_{j=1}^{2} \sum_{l=1}^{2} \sum_{j=1}^{2} \sum_$$

Sterile vs bring new CPV sources

$$U = \tilde{R}_{34} R_{24} \tilde{R}_{14} R_{23} \tilde{R}_{13} R_{12}$$

3v

$$R_{ij} = \begin{bmatrix} c_{ij} & s_{ij} \\ -s_{ij} & c_{ij} \end{bmatrix} \qquad \tilde{R}_{ij} = \begin{bmatrix} c_{ij} & \tilde{s}_{ij} \\ -\tilde{s}_{ij}^* & c_{ij} \end{bmatrix} \qquad \begin{bmatrix} s_{ij} = \sin \theta_{ij} \\ c_{ij} = \cos \theta_{ij} \\ \tilde{s}_{ij} = s_{ij} e^{-i\delta_{ij}} \end{bmatrix}$$

 $\begin{array}{c} 3\nu \\ 3\nu \\ 1 \text{ Dirac phases} \\ 2 \text{ Majorana phases} \end{array} \begin{array}{c} 3+1 \\ 3 \\ 3 \end{array} \left\{ \begin{array}{c} 6 \\ 3 \\ 3 \end{array} \right. \begin{array}{c} 3+N \\ 3+3N \\ 3 \\ 3 \end{array} \left\{ \begin{array}{c} 3+3N \\ 1+2N \\ 2+N \end{array} \right. \right\}$

Invisible at SBL but visible at LBL experiments...

A new interference term in the 3+1 scheme

N. Klop & A.P., arXiv: 1412.7524 (PRD 2015)

- Δ_{14} >> 1 : fast oscillations are averaged out
- But interference of $\Delta_{14}\, \&\, \Delta_{13}\, \text{survives}$ and is observable

$$P_{\mu e}^{4\nu} \simeq P^{\text{ATM}} + P_{\text{I}}^{\text{INT}} + P_{\text{II}}^{\text{INT}} \qquad \begin{array}{c} \mathbf{s_{13}} \sim \mathbf{s_{14}} \sim \mathbf{s_{24}} \sim 0.15 \sim \epsilon \\ \alpha = \delta \mathbf{m^{2}/\Delta m^{2}} \sim 0.03 \sim \epsilon^{2} \\ \alpha = \delta \mathbf{m^{2}/\Delta m^{2}} \sim 0.03 \sim \epsilon^{2} \\ P_{\text{I}}^{\text{INT}} \simeq 4s_{23}s_{13}^{2}s_{12}c_{12}(\alpha\Delta) \sin\Delta\cos(\Delta + \delta_{13}) \qquad \sim \epsilon^{3} \\ P_{\text{II}}^{\text{INT}} \simeq 4s_{14}s_{24}s_{13}s_{23} \sin\Delta\sin(\Delta + \delta_{13} - \delta_{14}) \qquad \sim \epsilon^{3} \end{array}$$

Sensitivity to the new CP-phase δ_{14}

Amplitude of the new interference term

N. Klop & A.P., PRD (2015)

 3ν limit

Numerical examples of 4v probability

The fast oscillations get averaged out due to the finite energy resolution

Different line styles ⇔ Different values of δ₁₄

The modifications induced by δ_{14} are almost as large as those induced by the standard CP-phase δ_{13}

Joint SBL and LBL constraints on $[\theta_{14}, \theta_{24}, \delta_{14}]$

SBL + LBL

SBL (all available data)

(Icecube and NEOS not included in this analysis)

 $\mathsf{LBL} \equiv \mathsf{T2K} + \mathsf{NO}_{\mathsf{V}}\mathsf{A}$

(Neutrino 2016 data)

Capozzi, Giunti, Laveder & A.P., arXiv:1612.07764 (PRD 2017)

- [θ_{14} , θ_{24}] determined by SBL experiments
- δ_{14} constrained by LBL experiments

0.5

Constraints on the two CP-phases

SBL + LBL

- δ_{13} is more constrained than δ_{14}
- Best fit values: $\delta_{13} \sim \ \delta_{14} \sim \ -\pi/2$
- This information cannot be extracted from SBL alone !

Impact on the standard parameters [θ_{13}, δ_{13}]

SBL + LBL

- Allowed range for θ_{13} from LBL alone gets enlarged
- Values preferred for $\delta_{13}{\equiv}\delta$ basically unaltered
- Mismatch (in IH) of LBL and Reactors decreases in 3+1

Impact of sterile neutrinos on θ_{23}

SBL + LBL

Indication for non-maximal θ_{23} persists in 3+1 scheme Preference for θ_{23} octant disappears in 3+1 scheme Octant fragility seems to be a general feature...

Octant of θ_{23} in danger with a sterile neutrino

Agarwalla, Chatterjee, A.P., arXiv: 1605.04299 (PRL 2017)

Distinct ellipses (3v) become overlapping blobs (3+1) For unfavorable combinations of δ_{13} & δ_{14} sensitivity is lost

Striking analogy between steriles and NSIs

Agarwalla, Chatterjee, A.P., arXiv: 1607.01745 (PLB 2016)

Also in this case a new CP-phase introduces a degeneracy Very small values of the coupling may be harmful

Discovery potential of mass hierarchy

Agarwalla, Chatterjee, A.P., arXiv: 1603.03759 (JHEP 2016)

Degradation of sensitivity but 4σ level preserved

CPV discovery potential

Agarwalla, Chatterjee, A.P., arXiv: 1603.03759 (JHEP 2016)

- Sensitivity to CPV induced by δ_{13} reduced in 3+1 scheme
- Potential sensitivity also to the new CP-phases $\delta_{14}\, e\, \delta_{34}$
- Clear hierarchy in the sensitivity: $\delta_{13} > \delta_{14} > \delta_{34}$ for $\theta_{14} = \theta_{24} = \theta_{34} = 9^0$

We may be able to measure two CP phases

Agarwalla, Chatterjee, A.P., arXiv: 1603.03759 (JHEP 2016)

Reconstruction of the CP phases in T2HK

Preliminary plot realized by S.S. Chatterjee

The dance of the ellipses

Extensions of SM are often sources of extra CP-phases In all cases a new interference term appears in $P_{\mu e}$ at LBL Bi-probability plots clearly represent this physical fact

Conclusions

- 3-flavor searches in evolution
- First indications about CPV and MO
- Intriguing hints of light sterile neutrinos
- New SBL experiments will shed light
- Full exploration of sterile vs possible with LBL only
- LBL program complementary to SBL one

Back up slides

CPV and averaged oscillations

$$A_{\alpha\beta}^{\rm CP} \equiv P(\nu_{\alpha} \to \nu_{\beta}) - P(\bar{\nu}_{\alpha} \to \bar{\nu}_{\beta})$$

$$A_{\alpha\beta}^{\rm CP} = -16J_{\alpha\beta}^{12}\sin\Delta_{21}\sin\Delta_{13}\sin\Delta_{32}$$
if $\Delta \equiv \Delta_{13} \simeq \Delta_{23} \gg 1$
osc. averaged out by finite E resol.
$$\langle \sin^2 \Delta \rangle = 1/2$$

It can be:

$$A_{\alpha\beta}^{\rm CP} \neq 0$$

if sin
$$\delta = \emptyset$$
)

The bottom line is that if one of the three v_i is ∞ far from the other two ones this does not erase CPV (relevant for the 4v case)

Two different perspectives

negative view

positive view

NEOS, arXiv:1610:05134

Gariazzo et al., arXiv: 1703.00860

Best fit: $\Delta m^2 = 1.73 \text{ eV} \quad \sin^2 2\theta = 0.05$ $\chi^2_{\text{no osc}} - \chi^2_{\text{min}} = 6.5$ > 95% CL indication!

No anomaly in v_{μ} disappearance

SBL & MINOS (NC)

IceCube

Tension in all v_s models

arXiv:1107.1452

$$\sin^2 2\theta_{e\mu} \simeq \frac{1}{4} \sin^2 2\theta_{ee} \sin^2 2\theta_{\mu\mu} \simeq 4|U_{e4}|^2 |U_{\mu4}|^2$$

Antonio Palazzo, UNIBA & INFN

An "undecidable" problem

App. & Dis. barely overlap at 2σ level

But their combination gives a 6σ improvement with respect to the 3v case

Difficult to take a decision on sterile vs !

Only new more sensitive experiments can decide

Figure from Giunti & Zavanin, arXiv:1508:03172 (tension slightly increased after NEOS, MINOS, IceCube)

Impact of the latest measurements

NEOS selects a subregion of the region allowed by all the other data : very intriguing!