

Ciro Riccio on behalf of the T2K collaboration NUFACT2017, Uppsala University September 25th 2017

UniversiTà degli STudi di Napoli Federico II

Overview

- Experimental setup
- Neutrino interactions at T2K
- Motivation for measuring cross sections
- Recent cross-section results
- Future work and summary

The T2K experiment

T2K Flux

- Beam 2.5° off the direction to the far detector
- Narrow beam centered around 0.6 GeV
- Reduce v_e component from K decays
- Flux estimation by hadron production measurements from NA61/SHINE

The Near Detector complex

Where T2K cross-section measurements have been performed!

INGRID on-axis detector:

- Monitor the beam direction
- 14 modules arranged as a cross and other 2 outside the main cross target: CH+Fe
- Extra module Proton Module target: CH

ND280 off-axis detector located 280 m from the target:

- π^0 detector POD target: CH+H2O
- 3 Time Projection Chambers (TPC)
- 2 Fine-grained detectors FGD target: CH+H2O
- Electromagnetic calorimeters (ECal)
- UA1 refurbished Magnet instrumented with side muon range detector (SMRD)

Relevant v interactions at T2K

What can we measure?

• Nuclear and detector effects obfuscate interaction mode

• Minimise the model dependence measure interaction topologies

Event generators

- Neutrino MC Generators connect the true and observed event topologies and kinematics
- Every observable is a convolution of flux, interaction physics and detector effects
- Re-weighting tools allow to assess uncertainties and tune the physics models
- T2K official generators are **NEUT** and **GENIE**
 - We compare our results against different models: GIBUU, NuWro

Why cross-sections measurement

Neutrino scattering understanding is crucial for the interpretation of neutrino oscillation since it affects background estimation and energy reconstruction.

One of the **largest systematic uncertainties** in neutrino oscillation comes from neutrino interaction uncertainty.

2016 oscillation analysis	v_{μ} 1 muon-like ring	<i>v_e</i> 1 electron-like ring	v_{μ} 1 muon-like ring	v _e 1 electron-like ring
v flux w/o ND280	7,6%	8,9%	7,1%	8,0%
v flux w/ND280	3,6%	3,6%	3,8%	3,8%
v cross section w/o ND280	7,7%	7,2%	9,3%	10,1%
v cross section w ND280	4,1%	5,1%	4,2%	5,5%
v flux+cross section	2,9%	4,2%	3,4%	4,6%
Final or secondary hadron int.	1,5%	2,5%	2,1%	2,5%
Super-K detector	3,9%	2,4%	3,3%	3,1%
Total w/o ND280	12,0%	11,9%	12,5%	13,7%
Total w/ ND280	5,0%	5,4%	5,2%	6,2%

ona) | ν_μ inclusive coressised tion (measurement on Catro, Naples U, & INFN | NUFACT2017 (Nulnt 17, 26/06/2017)

New features of the revisited analysis:

- Statistics has been increased by a factor of five
- Increased angular acceptance for high-angle and backward-going muons using the timing information between the sub-detectors
- Increased purities and efficiency
- Used a maximum likelihood fit instead of the bayesian unfolding
- Flux integrated cross section to avoid neutrino energy dependence
- Background constrained with two sidebands

Ciro Riccio, Naples U. & INFN | NUFACT2017

Publication in preparation!

v_{μ} CC0 π using μ +p kinematics

Selection and analysis strategy:

- Check if there are zero, one or more than one protons in the final state;
- Increase the angular acceptance for high-angle and backward-going muons using the timing information between the sub-detectors
- Used a maximum likelihood fit
- Background (CC resonant and CC DIS) constrained with two sidebands

Signal selection

v_{μ} CC0 π using μ +p kinematics

Publication in preparation!

true $\cos(\theta_{\mu})$: 0.98 1

- Cross section extracted as function of the muon momentum and angle for CC0π-0p
- Cross section extracted as function of the muon and proton angle and muon momentum for CC0π-1p with momentum greater that 500 MeV/c
- Observed interesting excess over GENIE (w/o 2p2h)

v_{μ} CC0 π using μ +p kinematics

Publication in preparation!

- Cross section extracted also as a function of the number of protons with momentum greater that 500 MeV/c
- Observed interesting excess over GENIE (w/o 2p2h)
- More comparison under preparation

Ciro Riccio, Naples U. & INFN | NUFACT2017

v_{μ} CC0 π using single transverse variables

v_{μ} CC0 π with single transverse variables

Publication in preparation!

Analysis strategy:

- Same selection used for $CC0\pi$ with proton kinematics
- Measure flux-integrated cross section in bins of single transverse variable
- Restrict the phase space essential to mitigate model-dependence: • $p_{\mu} > 250 \text{ MeV/c}$ $\cos \theta_{\mu} > -0.6$
 - $450 MeV/c < p_p < 1 GeV/c$ $\cos\theta_p > 0.4$
- Cross section extracted using a maximum likelihood fit with a regularization method

v_{μ} CC0 π with single transverse variables

Publication in preparation!

v_{μ} CC0 π with single transverse variables

Publication in preparation!

v_{μ} CC0 π with inferred proton kinematics

Analysis Ongoing!

Analysis strategy:

- Under hypothesis of stationary target and elastic scattering can infer proton kinematics from measured μ
- Non-zero imbalance between inference and measured proton indicates presence of nuclear effects or CC-non-QE interaction
- Same selection used for $CC0\pi$ with proton kinematic

Ongoing measurements

• ν_{μ} CC Inclusive water over carbon ratio:

- Use both FGDs
- Cross section extracted in v Energy

• ν_{μ} CC Inclusive on water using INGRID

- Use INGRID new water module
- Cross section extracted in μ -kinematics

• v_{μ} CC0 π water over carbon ratio:

- Use FGD2 water layers
- Cross section extracted using matrix inversion method and extended binned likelihood in μ -kinematics
- Next step: FGD1-FGD2 joint-fit: mitigate the water-carbon migration

Cross section on water coming soon!

Water

Ongoing measurements

- v_{μ} \bar{v}_{μ} CC0 π on CH :
 - Joint fit of v_{μ} \bar{v}_{μ} CC0 π cross section using extended binned likelihood
 - Cross section extracted in μ -kinematics
 - Evaluation of sum, difference and asymmetry

• $\overline{\nu}_{\mu} \mathbf{CC0} \pi$ on water:

- Use P0D water layers
- $v_{\mu} CC0\pi$ cross section using extended binned likelihood
- Cross section extracted in μ -kinematics
- $\bar{\nu}_{\mu}$ CC0 π on CH:
 - Use INGRID proton module
 - Cross section extracted in μ -kinematics

List of published measurements

- <u>Phys.Rev. D87 (2013) no.9, 092003</u>, "Measurement of the inclusive v_{μ} charged current cross section on carbon in the near detector of the T2K experiment"
- <u>Phys.Rev. D90 (2014) no.7, 072012</u>, "Measurement of the neutrino-oxygen neutral-current interaction cross section by observing nuclear de-excitation γ rays"
- <u>Phys.Rev.Lett. 113 (2014) no.24, 241803</u>, "Measurement of the Inclusive Electron Neutrino Charged Current Cross Section on Carbon with the T2K Near Detector"
- <u>Phys.Rev. D90 (2014) no.5, 052010</u>, "Measurement of the inclusive v_{μ} charged current cross section on iron and hydrocarbon in the T2K on-axis neutrino beam"
- <u>Phys.Rev. D92 (2015) no.11, 112003</u>, "Measurement of the v_{μ} charged-current quasi-elastic cross section with ND280 detector at T2K"
- <u>Phys.Rev. D91 (2015) no.11, 112002</u>, "Measurement of the v_{μ} charged current quasi-elastic cross-section on carbon with the T2K on-axis neutrino beam"
- <u>Phys.Rev. D93 (2016) no.7, 072002</u>, "Measurement of the muon neutrino inclusive charged-current cross section in the energy range of 1-3 GeV with the T2K INGRID detector"
- <u>Phys.Rev. D93 (2016) no.11, 112012</u>, "Measurement of double-differential muon neutrino charged-current interactions on C₈H₈ without pions in the final state using the T2K off-axis beam"
- <u>Phys.Rev. D95 (2017) no.1, 012010</u>, "First measurement of the muon neutrino charged current single pion production cross section on water with the T2K Near Detector"
- <u>Phys.Rev.Lett. 117 (2016) no.19, 192501</u>, "Measurement of Coherent π⁺ Production in Low Energy Neutrino-Carbon Scattering"
- <u>Phys.Rev.D96 052001 (2017)</u>, "Measurement of $\bar{\nu}_{\mu}$ and ν_{μ} charged current inclusive cross sections and their ratio with the T2K off-axis near detector"

Summary

- T2K near detectors provide a perfect opportunity to make precise cross-section measurements
- New inclusive cross-section measurement has been developed using new selection
- Measurement of the proton kinematics and single transverse variables very important to tune the model
- Many results with water as target are coming!
- Many anti-neutrino results in the near future!

Thank you for your attention

T2K Breakthrough Prize Party

January 28th, 2016 at Kuji Sunpia Hitachi

Backup

Event generators: details

	NEUT 5.3.2	GENIE 2.8.0	
CCQE	SF (Benhar et al., 2000) BBA05 (Bradford et al., 2005) $M_A^{QE} = 1.21 \text{ GeV/c}^2$ $p_F [^{12}C] = 217 \text{ MeV/c}$ $E_B [^{12}C] = 25 \text{ MeV}$	RFG (Bodek et al., 1981) BBA05 (Bradford et al., 2005) $M_A^{QE} = 0.99 \text{ GeV/c}^2$ $p_F [^{12}C] = 221 \text{ MeV/c}$ $E_B [^{12}C] = 25 \text{ MeV}$	
2p2h	Nieves et al., 2011	_	
CCRES	<u>W<2 GeV</u> Rein-Sehgal, 1981 FF (Graczyk et al., 2008)	<u>W<1.7 GeV</u> Rein-Sehgal, 1981 FF (Kuzmin et al., 2016)	
CCDIS	<u>W>1.3 GeV (w/o single π)</u> GRV98 PDF (Glück et al. 1998) BY corr. at low Q2 (Bodek et al. 2003)	<u>W>1.7 GeV (for W<1.7 GeV is tuned)</u> GRV98 PDF (Glück et al. 1998) BY corr. at low Q2 (Bodek et al. 2005)	
Hadronization	<u>W < 2 GeV</u> KNO scaling (Koba et al. 1972) <u>W > 2 GeV</u> PYTHIA/JETSET	<u>W < 2.3 GeV</u> AGKY (Koba et al. 1972) <u>2.3 GeV < W < 3 GeV</u> AGKY (Koba et al. 1972) + PYTHIA/JETSET <u>W > 3 GeV</u> PYTHIA/JETSET	
FSI	Intra-nuclear cascade	Intra-nuclear cascade (INTRANUKE hA)	

Ciro Riccio, Naples U. & INFN | NUFACT2017

STV and FSI

STV and MAQE

Extended binned likelihood fit

$$\chi^2 = \chi^2_{stat(fit\,goodness)} + \chi^2_{syst(penalty)} + \chi^2_{reg}.$$

$$\chi_{stat}^2 = \sum_{j}^{recobins} 2(N_j^{MC} - N_j^{obs} + N_j^{obs} ln \frac{N_j^{obs}}{N_j^{MC}})$$

$$\chi^2_{syst} = (\vec{a}^{syst} - \vec{a}^{syst}_{prior})(V^{syst}_{cov})^{-1}(\vec{a}^{syst} - \vec{a}^{syst}_{prior})$$

$$\chi^2_{reg} = p_{reg} \sum_{i} (c_i - c_{i-1})^2$$