Upgrade of J-PARC Accelerator and Neutrino Beamline toward 1.3MW

on behalf of J-PARC Accelerator team and Neutrino Group

2017.09.25

19th International Workshop on Neutrinos from Accelerators (NUFACT2017)

Contents

1. Introduction

2. Accelerator Upgrade

3. Neutrino Beamline Upgrade

4. Summary

J-PARC Neutrino Facility

Primary Beamline

Beam Monitors

Proton beam measurements and control

Precise beam control is crucial for high intensity beam

I,C,P

C,P

C,P

Secondary Beamline

Target Station

Horn1

Contents

1. Introduction

2. Accelerator Upgrade

3. Neutrino Beamline Upgrade

4. Summary

MR Beam Power Upgrade Plan

Beam Power	470 (achieved)	750kW (proposed) [original]	1MW (demonstrated)	1.3MW (proposed)
# of protons/ pulse	2.4 x 10 ¹⁴	2.0x10 ¹⁴ [3.3x10 ¹⁴] +2	2.6x10 ¹⁴	8% → 3.2x10 ¹⁴
Operation cycle	2.48 s	1.3 s [2.1 s]	1shot	1.16 s

Method

- Increase repetition rate for 750kW
- Increase beam intensity for >1.3MW

T2K-II Protons-On-Target Request

9

Accelerator/beamline upgrade for HK/T2K-II has selected as the highest priority project in KEK PIP

New PS for High Rep. Rate Operation¹⁰ Courtesy of T. Koseki

Large scale PS for bending magnets and quad. magnets in arc setions

Two large converters and large capacitance for energy recovery, symmetric power module circuit

Budget for three buildings of the magnet PS's and starting mass production of the PS's have been approved by the government in JFY2016.

Construction will be finished in 2017.

Middle scale PS for quad. magnets in straight section

Operated stably in user operation since the end of October 2016.

New PS for B-magnet

From Jul. 2017 PAC slides by F. Naito

• First new PS will be tested in the new building in this winter

1 unit of C-bank

container has 16 units.
 power supply has 3 containers.

Containers for capacitor bank

Inside containers

Toward Beam Power > 1MW¹³ Courtesy of T. Koseki

Beam Power (kW)	460 (Achieved)	864	1049	1326
#ppp(10 ¹⁴)	2.4	2.4	2.9	3.2
Rep T (s)	2.48	1.32	1.32	1.16

(1) To achieve 750 kW:

- New power supplies
- 2nd harmonic rf system
 2 harmonic cavities

(2) Toward >1 MW

- Higher rf voltage and more margin 11 fundamental cavities

In addition:

- VHF rf system
- BPM upgrade
- FX kicker upgrade

Bunching factor and longitudinal distribution 3.2x10¹³ ppb (~1 MW for 1.3 s cycle)

Peak Anode Current vs Circulating Protons/pulse¹⁴

Courtesy of T. Koseki

ppp (x10 ¹²)	200	240	300	330	#of AccRF	VRF(h=9)	#of 2ndRF	VRF(h=18)
2.485	390kW	465kW	580kW	640kW	7	280kV	2	110kV
1.28s	750kW	900kW	1100kW		9	510kV	2	110kV
1.16s	830kW	1000kW	1.2MW	1.3MW	11	600kV	2	110kV

Beam Power Upgrade

Courtesy of T. Koseki

Contents

1. Introduction

2. Accelerator Upgrade

3. Neutrino Beamline Upgrade

4. Summary

Neutrino Beamline Upgrade

Basic philosophy for beamline design

- Most of components were designed to accept 3.3x10¹⁴ ppp
- Replaceable components designed for 750kW (can be upgraded later)
- Non-replaceable components (HV, DV, BD) designed for 3~4MW

Necessary upgrade toward >1.3MW

- Primary beamline
 - Upgrade beam monitors
- DAQ

•

•

•

•

Upgrade DAQ/control system for higher rep. rate and safety operation

· Secondary beamline

- **Higher current** horn operation (250kA \rightarrow 320kA)
- Cooling capacity upgrade
- Upgrade for radioactive water disposal
 - Radiation damage studies and develop more radiation-resistant beamline components (target/beam window, etc)

Current Acceptable Beam Power¹⁸

Component	Limiting factor	Current acceptable value	
Target/ Beam window	Thermal shock	3.3x10 ¹⁴ ppp	
	Cooling capacity	0.9MW	
	Conductor cooling	2MW	
Цала	Stripline cooling	0.75MW	
Horn	Hydrogen production	1MW	
	Operation	250kA, 2.48s	
	Thermal stress	4MW	
ne vessei	Cooling capacity	0.75MW	
	Thermal stress	4MW	
Decay volume	Cooling capacity	0.75MW	
	Oxidization	3MW	
Beam Dump	Cooling capacity	0.75MW	
Radiation	Radioactive air	>2MW	
disposal	Radioactive water	0.4MW	

Beam Monitor Upgrade

Wire Secondary Emission Monitor (WSEM)

- First prototype installed \Rightarrow worked well as expected
- Beam loss reduced by 1/10 of current SSEM

Beam Induced Fluorescent Monitor (BIF)

- Light emission from beam-gas interaction
- Various component tests ongoing

WSEM Mounted on Mover 13/

Test Optical System @IPMU

· Schedule

J-MRC

•

•

- Aim to install
 - · WSEM in ~2018
 - BIF in ~2020

Test Vacuum Vessel @Tokai

Other Monitors

Muon monitor upgrade

- Si detectors and lon Chambers \Rightarrow Si degradation at high beam power
- Developing new type of muon monitors (electron multiplier tube, EMT)

OTR upgrade

- Problem on rotation system
- · Develop more redundant system
- Radiation damage is an issue
- New Ti material to be used
- · Other material (e.g., graphite)

Control/DAQ Upgrade for 1Hz Operation

- Faster DAQ for high rep. rate ⇒ New FADC (by Hamada@KEK)
- New hardware interlock for safe beam operation ⇒ New interlock module (by Yamasu@Okayama U)
- Prototype boards under development
- Aim to implement in FY2019 or earlier
 New FADC

21

Target Upgrade

Original target design

- Design intensity = 3.3×10^{14} ppp $\rightarrow 3.2 \times 10^{14}$ ppp should be no problem
 - Understanding radiation damage is crucial
- Cooling capacity: 900kW

Improvement

- **Higher flow rate** needed \rightarrow higher pressure tolerance
 - Upgrade of He compressor is needed to increase flow rate
- FEM simulation for 1.3 MW \Rightarrow max temp. = 909°C (should be reduced)
 - Further study is ongoing

	0.75 MW	1.3 MW
Helium pressure	1.6 bar	5 bar
Pressure drop	0.83 bar	0.88 bar
Helium mass flow	32 g/s	60 g/s
Heat load	23.5 kW	40.8 kW
US window temp	105°C	157 °C
DS window temp	120°C	130°C
Targe core temp	736 ℃	909 °C

Horn System Upgrade

23

10%

5.321 / 4 0.9417E-01

0.3798E-03

0.5822E-04

250kA

14949E-03

0.1342E-03

320k/

à

normalized

ratio

0.8

0.6

0.4

0.2

Horn current increase: 250 kA \rightarrow 320 kA (design) _{v flux SK (0.4-1.0GeV, normlized)}

- ~10% flux gain for right-sign neutrinos
- 5~10% flux reduction for wrong-sign neutrinos
- 3 power supply system is adopted

•

•

- New PS, new transformer, new striplines developed
- Further 1PS, 2trans., striplines needed

Horn System Upgrade

Stripline cooling improvement

- Heat deposit by defocused particles \Rightarrow Cooling w/ forced He flow (750kW)
- Staged upgrade toward 1.3MW
 - Higher He flow rate w/ He compressor upgrade ⇒ ~1MW
 - Water-cooled striplines for >1.3MW
 - Water-tube embedded in AI plates using FSW
 - Can be acceptable >3MW
 - R&D plan :

•

•

- · Cooling test (~FY2017) \Rightarrow current test (FY2018~)
- To be installed to horn in FY2021

Radioactive Water Disposal

Radioactive water disposal

³H (Tritium) \rightarrow dilution, ⁷Be \rightarrow 99.9% removed by ion-exchange

HTO disposal by dilution

- Current dilution tanks (84m³) : **400kW** (8.4x10²⁰ POT/year) acceptable Toward >1.3MW, following will be adopted step by step
- · Increase disposal cycle \Rightarrow needs some technical improvements
- A portion of radioactive water is taken by tanker truck
- Construct an additional dilution tank with O(200)m³, entailing construction of new dedicated building

Cooling Capacity Improvement²⁶

- Secondary beamline
 - Designed for 750kW \rightarrow higher capacity needed for > 1.3MW
- Improvement
 - Higher flow rate \rightarrow replace with larger pumps
 - · Higher cooling capacity \rightarrow larger heat exchangers/cooling tower

Acceptable Beam Power

Component	Limiting factor	Current acceptable value	Upgraded acceptable value
Target/	Thermal shock	3.3x10 ¹⁴ ppp	3.3x1014 ppp
Beam window	Cooling capacity	0.9MW	>1.5MW
	Conductor cooling	2MW	2MW
	Stripline cooling	0.75MW	>3MW
Horn	Hydrogen production	1MW	>1.5MW
	Operation	250kA, 2.48s	320kA, 1s
	Thermal stress	4MW	4MW
ne vessei	Cooling capacity	0.75MW	>1.5MW
	Thermal stress	4MW	4MW
Decay volume	Cooling capacity	0.75MW	>1.5MW
	Oxidization	3MW	3MW
Beam Dump	Cooling capacity	0.75MW	>1.5MW
Radiation disposal	Radioactive air	>2MW	>2MW
	Radioactive water	0.4MW	>1.5MW

Timeline

FY201	7 FY2018	FY2019 FY20	020 FY2021 FY2022
1.3 MW			•
750 kW		•	
500 kW			
Target/Beam Window He cooling			Upgrade system
Horn stripline cooling		Reinforce He flow system	Water-cooled striplines
Horn PS		320 kA/1Hz	
Water cooling		Upgrade	e system
Radio-active water disposal	C	Additional lilution tank	
Beam monitor	WSEM	В	IF
upgrade	installation	n instal	llation
DAQ/control upgrade	В	1 HZ DAQ Seam interlock	

Summary

- Upgrade toward 1.3 MW
 - Accelerator upgrade
 - Higher rep. rate (2.48 s \rightarrow 1.3 s \rightarrow **1.16 s**) : PS upgrade, RF upgrade
 - Higher intensity (2.4x10¹⁴ ppp \rightarrow 3.2x10¹⁴ ppp) : RF upgrade
 - · Beamline upgrades
 - Beam monitor upgrade
 - · Control/DAQ upgrade for high rep. rate operation
 - · Target upgrade
 - Horn current upgrade to 320kA
 - · Upgrade of radioactive water disposal
 - Higher cooling capacity for secondary beamline

J-PARC Neutrino Beam

- High intensity beam
 - 750 kW proton beam (design: 30 GeV, 3.3x1014 ppp, 2.1 s cycle)
- Off-axis neutrino beam (2~2.5°)
 - Narrow band beam ~ 0.6 GeV
 - Suppress high E background
 - · 99% pure ν_{μ} beam (1% ν_{e} contamination)

Japan Proton Accelerator Research Complex (J-PARC)

> Neutrino Beam Line for T2K Experiment (30 GeV) ◀

> > Material Life Science Facility (MLF) (3 GeV)

400 MeV

H- Linac

Main Ring Synchrotron (MR)

Rapid Cycling

chrotron (RCS)

Hadron Experimental Hall (HD) (30 GeV)

3

33 30 GeV Main Ring Synchrotron (MR)

Three dispersion free straight sections of 116-m long:

- Injection and collimator systems
- Slow extraction (SX)
 - to Hadron experimental Hall
- RF cavities and Fast extraction(FX) (beam is extracted inside/outside of the ring) outside: Beam abort line
 - inside: Neutrino beamline (intense v beam is send to SK)

)

Operation History

MR Beam Power

Achieved beam power:

Fast extraction ~ 470 kW (2.4 x10¹⁴ ppp) for users, 516 kW for demonstration. Slow extraction ~ 44 kW (5.1 x10¹³ ppp) for users , 50 kW for demonstration.

Courtesy of T. Koseki

470kW User Operation Courtesy of T. Koseki

Loss at MR $\sim 800 \text{ W} < \text{MR}$ collimator limit of 2 kW. 0.5 Loss at 3-50BT <100 W < 3-50BT collimator limit of 2 kW

RF anode power supply tripped several times by the current limit. It limited the beam power. Longitudinal instability happened frequently > 480kW

count 600 600 400 200 50 100 150 200 **MR** address

0

510kW Trial

- at the new betatron tune (21.35, 21.45) -

High power trial (2nd rf voltage was adopted)

Extracted beam : 2.64 e14 ppp

Total beam loss ~ 1.7 kW

	Number of ppp	Bunch number	repetition period (sec)	Beam power (kW)	Beam Ioss (kW)	Notes
1	2.64e14	8	2.48	511	1.7	measurement
2	2.64e14	8	1.28	991	3.3	estimation

The MR has capability to achieve >1MW, with the high repetition rate operation.

Neutrino Beam Stability

Courtesy of T2K Collaboration

- Event rate was very stable within 1%
- Beam direction was also stable within 1 mrad.

KEK Project Implementation Plan (KEK-PIP)

- Prioritization of projects which require new funding requests
- External review (May 22,23, 2016)
 - · Recommendations
 - <u>https://www.kek.jp/ja/About/OrganizationOverview/</u> <u>Assessment/Roadmap/KEK-PIP_Evaluation.pdf</u>
- KEK-PIP taking into account the recommendations
 - https://www.kek.jp/ja/About/OrganizationOverview/ Assessment/Roadmap/KEK-PIP.pdf

Project to be prioritized: COMET II J-PARC upgrade for Hyper Kamiokande Hadron Hall Extension H-line and g-2/EDM LHC and ATLAS Super Computer RNB Separate prioritization Light Source

Upgrade of J-PARC for Hyper-K/T2K-II is highest priority

MR Upgrade Plan

Revised in Jan. 2017

JFY	2015	2016	2017	2018	2019	2020	2021	2022
	New buildings			Long shutdown				
FX power [kW]	390	470	480-500	> 500	700	800	900	1060
SX power [kW]	42	42	50	50-60	60-80	80	80-100	100
Cycle time of main magnet PS New magnet PS	2.48 s	Mas inst	ss production allation/test	2.48 s	1.3 s	1.3 s	1.3 s	1.3 s
High gradient rf system 2 nd harmonic rf system	Installa	tion Mar	nufacture, insta	allation/test			==:	
Ring collimators	Add.coll imators (2 kW)				Add.colli. (3.5kW)		Upgra 1.3I	de for MW
Injection system FX system	Kicker PS Kicker PS	improvement, s improvement, F	Septa manufacture X septa manufact	e /test ure /test				
SX collimator / Local shields						Local shie	elds	
Ti ducts and SX devices with Ti chamber			ESS					

MR PS Upgrade

Original Plan of the PS development

The KEK budget of JFY2017 is too low to produce 4 large power supplies. (However we want to make two PSs at least if it is possible.) —> It is hard to complete the mass-production of the magnet until JFY2018. So we are discussing the postponement of the schedule for a year.

F. Naito @ 24th J-PARC PAC

J-PAC July/27/2016							
MR: RF voltage upgrade							
Ins C Ins C Space between Kicker							
4 cavities/Long Straight 3 cavities/ long straight							
	2013	2014	2015	2016	2017	2018	
Events	<i>Li 400 MeV</i>	Li 50mA				MR 1.3-sec operation	
Present FT3M cavities	9	8	4	0	0	0	
New FT3L Cavities	0	1	5	9	9	9	
2 nd harmonic cavity	0	0	0	0	2	2	
Available voltage	315 kV	355 kV	485 kV	602 kV	602 kV	602 kV	
(2 nd Harmonic)	(35 kV)	(70 kV)	(70 kV)	(70 kV)	(70 kV)	80 kV	
Number of cavity cells	27	29	36	43	43	43+8(2 nd)	

Power modules are also added to the anode power supply of the RF cavity in this summer for the beam power increment. 21

F. Naito @ 22th J-PARC PAC

Simulation Studies on Dynamic Aperture at (21.x, 21.x) and (22.x, 22.x) Courtesy of T. Koseki

Survival ratio by space Dynamic aperture survey (No magnetic error/no space charge) charge PIC simulation LAX JANDO Aperture Score (21,xx, 21,xx) Aperture Score (22.xx, 22.xx) 21.5 21.46 No error, Chrom 75%, dp= 0.0% 22.5 22.46 no error, chrom 75%, dp=0.0% × Score 21.39 22.39 0.999 21.32 22.32 x-244 $\nu_{y\ 21.25}^{\ 'y}$ ν_{y 22.25} 7 0.998 N/N₀ 21.18 22.18 0.997 21.11 22.11 (21.38.21.40)(22.38, 22.40)0.996 21.04 2.04 <3 21.1 21.15 21.2 21.25 21.3 21.35 21.4 21.45 22.022.05 22.1 22.15 22.2 22.25 22.3 22.35 22.4 21.022,45 (22.41, 20.76)coup. corr. 21.0 22.0 22.5 21.5 ν_{x} ν_x 0.995 1000 2000 3000 4000 5000 0 (22.*, 22.*) (21.*, 21.*) turn

Dynamic aperture at the current operation tune of (21.35, 21.45) is affected by the structure resonance of vx-2vy = -21. Operation at the tune of $(22.^*, 22.^*)$ has better beam survive ratio than $(21.^*, 21.^*)$ For the area $(22.^*, 22.^*)$, new magnet power supplies are needed in our operation.

Tune survey around the present operating point

Courtesy of T. Koseki

Tune scan for 2.9 e13 ppb (450 kW equivalent for 2.48 s cycle) provided reasonable beam survival between (21.35, 21.42) and (21.39, 21.46). Present 470 kW user operation is at (21.35, 21.45).

Beam Window Upgrade

Design change considered

- · FEM simulation for 1.3 MW with expected beam parameters
- · Various thickness considered
 - Current 0.3mm is not good \rightarrow 0.5mm or 0.7 mm is much better
 - Transient analyses say 0.5mm is optimum.

Horn Current Increase

Horn current increase: 250 kA \rightarrow 320 kA (design)

~10% flux improvement for right-sign neutrinos

٠

٠

5~10% flux reduction for wrong-sign neutrinos

Stripline Cooling

Heat deposit at striplines \rightarrow largest at horn2

- Forced He flow inside stripline ducts
 - · Current flow rate for Horn2 \rightarrow 750 kW acceptable
 - Increase flow rate with dual compressors \rightarrow 1.25 MV

	Horn1	Horn2	Horn3			
Heat flux per stripline plate (J/m ²) @ 1.3 MW						
Total (Beam + Joule)	214	1066	141			
Acceptable beam power (MW)						
Current flow rate	2.10	0.75	2.04			
Improved flow rate	_	1.25	-			

Striplines

Stripline duct

Stripline Water Cooling

Water cooled striplines

•

•

٠

- Stainless pipe embedded in 12mm-thick plate by FSW technique.
- Cooling test with small test piece \rightarrow > 3 kW/m²/K achieved.
- Max temp. @ 1.3 MW = $\sim 50^{\circ}$ C (< allowable temp. 80°C)
 - 1.25 MW (by He cooling) \rightarrow > 3 MW acceptable

Radiation Damage In Accelerator Target Environments

‡ Fermilab

JAK

Argonne

ABORATOR

RIDGE

BROOKHAVEN

Los Alamos

- To solve a world's common problem to understand the effect of radiation damage on target/window materials, accelerator & fission/fussion communities' researchers & engineers work together.
- J-PARC neutrino was an active partner since 2014
- From JFY2016 J-PARC plan to join officially

Neutrino Beam Window Ti Alloy ~1x10²¹ pot ~1 Displacement Per Atom (Existing data up to ~0.3DPA)

NuMI graphite broken target Post-Irradiation Examination (PIE) at PNNL: Swelling effect observed

New Irradiation Run at BNL (2017 February ~)