Sterile Neutrino Search at the NEOS Experiment

Youngju Ko Center for Underground Physics at Institute for Basic Science NEOS Collaboration September 26, 2017 NUFACT 2017 @ Uppsala University

Contents

- Introduction to NEOS
 - Neutrino Anomalies and 3+1 Framework
 - Reactor Neutrino Experiment
- Experimental Site and Detector
 - Experimental Site
 - NEOS Detector
 - Construction and Operation
 - Calibration
- Reconstruction
 - Response and Simulation
 - Single Event Reconstruction
 - IBD Candidate
- Oscillation Analysis
- Conclusion

NEOS Collaboration

- NEOS: Neutrino Experiment for Oscillation at Short baseline
- NEOS Collaboration: 19 collaborators at 6 institutes
 - Chung-Ang University
 - Institute for Basic Science
 - Jeonnam National University
 - Korea Atomic Energy Research Institute
 - Kyungpook National University
 - Sejong University

Neutrino Anomalies and 3+1 Framework

- LSND and MiniBooNE
 - $\nu_{\mu} \longrightarrow \nu_{e}$ appearance experiment

⇒ There are excess of neutrino appearance.

- GALLEX and SAGE (gallium anomaly)
 - For calibration, $\nu_e \longrightarrow \nu_e$ disappearance is measured.

⇒ There are deficit of survived neutrinos.

Neutrino Anomalies and 3+1 Framework

- Reactor antineutrino anomaly (RAA)
 - Short baseline reactor experiments ($\nu_e \longrightarrow \nu_e$ disappearance)
 - Predicted number is increased due to update of flux.
 - \Rightarrow Measured to predicted ratio = 0.94 ± 0.02.

Neutrino Anomalies and 3+1 Framework

- Anomalies cannot be explained with $3-\nu$ oscillation.
- 3+1 framework
 - three active neutrinos and a sterile neutrino
 - It can explain excess or deficit of anomalies.
- According to analysis of the anomalies in the 3 + 1 framework, Δm_{41}^2 is expected to be large (~ eV² scale).
 - NEOS:
 - Reactor neutrino experiment at short baseline.
 - To search for sterile neutrino in the 3+1 framework

RAA (combined result)

Reactor Neutrino Experiment

- Beta decay in the reactor core: neutrino source
 - $n \to p + e^- + \bar{\nu}_e$ (beta decay)
- Inverse beta decay (IBD) in the detector: neutrino detection $(\bar{\nu}_e + p \rightarrow e^+ + n \pmod{\text{IBD}})$
- Neutrino energy spectrum at detector
 Neutrino flux from reactor

• IBD in the Gd loaded liquid scintillator (Gd-LS)

• Predicted number of IBD in energy bin i

$$\begin{split} N_i^{\text{predicted}}(L) = & \underbrace{\frac{N_p \epsilon_i}{4\pi L^2}}_{k} \underbrace{\frac{P_{\text{th}}}{\sum_k f_k E_k}}_{k} \int_i S(E_{\nu_e}) \underbrace{P(E_{\nu_e}, L)}_{k} dE_{\nu_e} \end{split} \\ \begin{array}{c} \text{Detector} & \text{Number of} & \text{Survival} \\ \text{part} & \text{fissions} & \text{probability} \end{split} \end{split}$$

Reactor Neutrino Experiment

- Survival probability of electron antineutrino in leading order
 - $P_{\bar{\nu}_e \to \bar{\nu}_e}(E_{\nu}, L; \theta_{1j}, \Delta m_{j1}) = 1 \sin^2 2\theta_{1j} \sin^2 \left(1.27 \right)$
 - MeV-scale neutrino energy and eV²-scale $\Delta m_{41}{}^2$
 - ⇒ Short baseline experiment (several to tens meters)

 θ_{13} mixing ⇒ Background expected to be high : Daya Bay, **Double Chooz** New reactor v flux arXiv:1101 **RENO** Nucife 0.9 v-oscillation θ₁₂ mixing angle N_{OBS}/(N_{EXP})_{pred,new} oscillation 7 mixing ancie θ_{14} mixing? θ₁₃ 0.8 Doui le Chooz 0.7 Reactor Terra Incognita Antineutrino 4th neutrino ??? Aromaly arXiv 1101.2755 0.6 Physics scenarios θ_{12} mixing 3 active v + 1 sterile v (new) 3 active v 0.5 Data : KamLAND 10 10[°] 10¹ 10^{2} 10^{3} 10⁴ Distance to Reactor (m) NEOS (~24 m)

Experimental Site

- Hanbit Nuclear Power Plant (NPP) in Younggwang, Korea
 - 2.8 GW_{th} commercial reactor
 - Core size: 3.1-m diameter and 3.8-m height
 - Low enriched uranium fuel (4.6% ²³⁵U)
 - Refuel: change 1/3 of fuel rods for each burn-up cycle

Experimental Site

- Detector in tendon gallery of Reactor Unit 5
 - 23.7-m baseline and 20-m.w.e overburden
- Detector sensitivity
 - Most sensitive range for ~eV sterile neutrinos
- Single detector
 - Understanding detector response
 - Reference model

NEOS Detector

- Photomultiplier tubes (PMTs)
 - Two buffer tanks filled with mineral oil at both side of the target tank
 - Acrylic windows b/w target and buffers
 - 19 R5912 (8 inch) PMTs are installed in each buffer tank.

- Active target
 - Homogeneous liquid scintillator (LS)
 - 1008-L volume:
 - R = 51.5 cm, H = 121 cm
 - IBD in 0.5% Gd-LS
 - Mixed LS: LAB- and DIN-based LS (9:1)

LAB: Linear Alkyl Benzene DIN: Di-isopropylnaphthalene PSD: Pulse Shape Discrimination

NEOS Detector

- Shieldings
 10-cm B-PE (n)
 10-cm Pb (γ)
 Muon detectors (Plastic scintillator)
 - DAQ systems
 - 500 MS/s Flash ADC for target
 - Recording waveforms for PSD
 - 62.5 MS/s ADC for muon detectors

- Muon detectors for veto
 - 15 plastic scintillators with PMTs except bottom side

Construction and Operation

Construction and Operation

Calibration

Source calibration

- Once a week with point sources
 - ¹³⁷Cs: 0.66-MeV γ , ⁶⁰Co: 1.17/1.33-MeV γ
 - ²⁵²Cf: neutron source
 - \Rightarrow 2.2-MeV γ from n-H capture

 $\Rightarrow \gamma s$ (8 MeV) from n-Gd capture

- Po-Be: neutron and 0.8-/4.4-MeV γ

NUFACT2017

2800

2600

Charge [pC]

Calibration

• 3D calibration

- ¹³⁷Cs, ⁶⁰Co, and ²⁵²Cf at various positions
- Position dependence
- escaping γs from target
- used for MC tuning

Calibration

- Internal/external background
 - Continuous and volume source
 - ^{40}K in PMT glass: 1.46-MeV γ
 - ²⁰⁸TI in B-PE: 2.61-MeV γ
 - Correction for time dependence
 - Radon in LS: α-/β-decay
 - α : Correction for position dependence
 - β: Validation of MC tuning

\bullet Correction for position with α

- α source is uniformly distributed throughout LS

• Correction for time with γ from ²⁰⁸TI

- MC Simulation based on GEANT4
 - LS optical properties, PMT properties
 - Full simulation including electronics simulation
- Tuning with calibration data

- Charge to energy conversion
 - Only single γ sources are used for conversion.
 - Non-linearity due to quenching and Cherenkov effect
 - Energy is quenched at low energy
 - Cherenkov effect is dominant at higher energy.

Energy spectra of β-decay

 ²¹²Bi, ²¹⁴Bi, and ¹²B
 Uniform distribution throughout LS

 Simulation and data are in good agreement.

²¹²Bi

1.5

Data

Simulation

Single Event Reconstruction

- Energy distribution
 - Selection: E_s > 0.6 MeV
 - 2.61-MeV γ from ^{208}TI
 - n-Gd capture signals at 8 MeV

Energy resolution for full peak
 ~4.8% at 1 MeV

IBD Candidate

- Criteria for delayed events
 - Energy range: 4-10 MeV
 - Signal due to n-Gd capture ($\Sigma E_{\gamma} \sim 8 \text{ MeV}$)
 - Escaping $\gamma s \Rightarrow$ lower the lower bound
 - γ events from ²⁰⁸Tl can affect near 4 MeV.
 - Time coincidence: 1-30 μs
 - Capture time is 7-8 μs in 0.5% Gd-LS

IBD Candidate

- Multiplicity cut
 - For reducing backgrounds due to multiple neutrons
 - No event in time window, [T_p 30 $\mu s,$ T_p + 150 μs]
- Muon veto
 - All events are vetoed in time window, [T_v, T_v + 150 μ s]

 T_p : prompt event time T_v : muon event time

IBD Candidate

- Pulse shape discrimination (PSD)
 - For reducing backgrounds due to fast neutrons
 - Accepting 99.9% γ-like events
 - More than 70% of background is reduced.

Counts per day

Reactor off

accept

cut off

More than 70 % of background

reduced via PSD

Prompt energy spectrum

• S/B ratio ~ 22

- Reactor-on: ~2000 /day
- Reactor-off: ~85 /day
- Comparison with HM model
 - 5-MeV excess
 - Not suitable for oscillation analysis
- Comparison with Daya Bay
 - Different fission fraction
 Correction with HM
 - Generally in an agreement
 - Oscillation analysis
 - Spectral shape analysis: High dependence on reference spectrum

Measured/Predicted 1.10 1.05 1.00 0.95

0.90

0.85

Chi-square Distribution

- χ^2 minimum (best fit) with 3+1 ν hypothesis
 - $-\chi^2_{4\nu}/\text{NDF} = 57.5/59$
 - at $(\sin^2 2\theta_{14}, \Delta m_{41}^2) = (0.05, 1.73 \text{ eV}^2)$
- χ^2 with 3ν hypothesis
 - $-\chi^2_{3\nu}/\text{NDF} = 64.0/61$
 - $-\Delta\chi^2 = \chi^2{}_{3\nu} \chi^2{}_{4\nu} = 6.5$

Significance Test

- Significance test
 - 0.3M sets of pseudo-experiments for significance test
 - There is no strong evidence of light sterile neutrino with 3+1 hypothesis.

Significance Test and Exclusion Limits

• Exclusion limits: Raster scan with χ^2 distribution

arXiv: 1610.05134 / PRL 118, 121802 (2017)

Conclusion

- Physics Goal of NEOS
 - Sterile neutrinos search beyond Standard Model
 - Short distance behavior of reactor neutrino
- Detector Performance
 - PSD reduces more than 70% of background.
 - Energy resolution is about 4.8% at 1 MeV.
 - Signal to background ratio is about 22.
- Spectrum is compared with two models
 - 5 MeV excess is confirmed at short baseline for the first time.
 - There is no strong evidence of light sterile neutrino with 3+1 hypothesis.
 - Best fit of Reactor Antineutrino Anomaly is disfavored.

Thank you

Backup

NEOS Detector: PSD improvement

PSD tests

Optimization of fraction

Charge and Time from Waveform

Energy measurement by NEOS detector

- The detector is a calorimeter.
- Signals from PMTs are recorded in waveforms.
- Charge and time are obtained from the waveforms.

Charge Q and FADC value F

- FADC value: height of waveform
- Charge: integration (summation) of waveform

$$Q = \int \frac{V}{R_{terminal}} dt = 0.024 \sum_{i=sbin}^{bin} F_i \quad \text{subtract} \quad Q \approx 0.024 \left(\sum_{i=sbin}^{bin} F_i - (ebin - sbin + 1)F_{pedestal} \right)$$

Definition of some information

- \mathbf{Q}_{tot} : charge of waveform with whole range
- F_{max} : Maximum of FADC value in Waveform
- F_{maxx}: time bin at F = F_{max}
- t_{pulse} : time at half maximum of fitted Gaussian
- t_{trg} : triggered time of events

Corrections: Vertex dependency

Vertex dependency

- Charge sum of event occurring near PMTs has a larger value than that of center.

Charge asymmetry Az

- Az is defined for vertex correction.

$$A_z \equiv \frac{Q_{\rm sum,R}^{\rm un} - Q_{\rm sum,L}^{\rm un}}{Q_{\rm sum,R}^{\rm un} + Q_{\rm sum,L}^{\rm un}}$$

Fitting function and correction function

- fitting function: 4th order polynomial

$$f_{\text{asym}}(A_z) = \sum_{i=0}^{4} p_i A_z^i$$

- correction function

$$c_{\text{vertex}}(A_z) = \frac{f_{\text{asym}}(0)}{f_{\text{asym}}(A_z)}$$

Corrected charge sum

 $Q_{\text{sum}}(t_{\text{trg}}) = c_{\text{vertex}}(A_z) \cdot Q_{\text{sum}}^{\text{un}}(t_{arg})$

Charge Drift and Muon Selection

Correction for charge drift

- There are charge drift due to variation of temperature.
 - ⇒ It can be corrected with gamma from ²⁰⁸TI

Muon event selection for veto

- If it is judged that it is a muon event,

all the events for a certain time are vetoed

Muon cuts					
detector #	cut (pC)	detector #	cut (pC)	detector #	cut (pC)
1	297	6	281	11	453
2	297	7	297	12	453
3	297	8	297	13	453
4	281	9	297	14	453
5	266	10	453	15	453
	-		_		-

Escaping Gammas

Detector response matrix

- It has effects of resolution and escaped gamma
- It can be obtained by detector simulation

Fission fraction correction

Systematic Uncertainties: Flux Model

Propagation of covariance matrix

- Daya Bay provides uncertainty of the flux as the form of a covariance matrix.
- Covariance for analysis is propagated from the covariance of Daya Bay.

$$M_{flux}^{ij} = \sum_{k,l} D^{ik} \frac{V_{DB}^{kl}}{S_{DB}^k S_{DB}^l} D^{jl}$$

- Correlation matrix

correlation matrix of DB

Neutrino Energy [MeV]

Systematic Uncertainties: Energy Scale

Derivative of template for scale factor ϵ

- Energy scales of the simulated data and the measured data can be different.
- Systematic uncertainties due to energy scale differences should be considered.

$$N_{\exp}|_{E \to (1+\sigma_{\epsilon})E} \approx N_{\exp} + \sigma_{\epsilon} \frac{\partial N_{\exp}}{\partial \epsilon}\Big|_{\epsilon=0}$$

Covariance Matrix and Chi-square Distribution

Covariance matrix

- Covariance method is used for analysis
- All uncertainties must be expressed in the form of a covariance matrix.

Covariance Matrix and Chi-square Distribution

Chi-square formula

- Covariance method
- Shape-only analysis

$$\chi^{2} = \sum_{i,j} \left(N_{\text{obs}}^{i} - N_{\text{exp}}^{i} \right) \left[M^{ij} \right]^{-1} \left(N_{\text{obs}}^{j} - N_{\text{exp}}^{j} \right)$$

where $N_{\text{obs}}^{i} = N_{\text{on}}^{i} - (t_{\text{on}}/t_{\text{off}}) N_{\text{off}}^{i}$
 $N_{\text{exp}}^{i} = N_{\text{exp}}^{i} (\sin \theta_{14}, \ \Delta m_{41}^{2})$

