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Energy Intensity

Purity

Some Important Frontiers of Particle Physics

• In devising a new experiment, one 
might be interested in these three 
frontiers:
• Purity

• Pure

• Devoid of  

• Well understood spectrum

• Intensity
• Statistics

• S/N

• Energy
• Specific energy  L/E

• Low energy spread

• Etc.

• Decay-At-Rest can provide
high Intensity, high purity
and a well-understood (low-)
energy spectrum…



Outline

• Decay-At-Rest - Overview

• (A few) Experiments
• COHERENT

• JSNS2

• KPipe

• DAEδALUS

• IsoDAR

• IsoDAR: The Anatomy of a Cyclotron 
Proton Driver
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Decay-At-Rest Processes
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π+ μ+ K+ AX
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Decay-At-Rest – Four Types

π+

μ+

K+

AX

Purity

PiDAR

MuDAR

KDAR

IsoDAR
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Decay-At-Rest – Production

• Either by protons impinging on a target (Pi/Mu/KDAR)

• Or by neutron capture and subsequent beta-decay (IsoDAR)
e.g.:

Intensity

600-3000 MeV protons
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Decay-At-Rest – Production

• Either by protons impinging on a target (Pi/Mu/KDAR)

• Or by neutron capture and subsequent beta-decay (IsoDAR)
e.g.:

Intensity

600-3000 MeV protons

60 MeV protons
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Decay-At-Rest – Energy Spectra
Energy

π+

μ+
K+

AX

Low Energy ( = short baseline)
Narrow, sometimes even mono-energetic
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Decay-At-Rest – Detection

• In order to detect neutrinos we must decide:
• The flavor(s) we are looking for

• The type of interaction  Charged Current (CC) and Neutral Current (NC)

• Some examples of low energy interaction open to DAR neutrinos
• NC: Coherent Elastic Neutrino-Nucleus Scattering (            )

• CC: At typical DAR-energies,     interact through 
Inverse Beta Decay (IBD):

Want large number of protons available 

• Scintillator

• Gd-doped water-Cherenkov detector 

• CC:                                     in Liquid Scintillator

(signal from prompt       and final state proton

+ delayed Michel electron)

KamLAND
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Decay-At-Rest – Detection

• In order to detect neutrinos we must decide:
• The flavor(s) we are looking for

• The type of interaction  Charged Current (CC) and Neutral Current (NC)

• Some examples of low energy interaction open to DAR neutrinos
• NC: Coherent Elastic Neutrino-Nucleus Scattering (            ) (CEvNS)

• CC: At typical DAR-energies,     interact through 
Inverse Beta Decay (IBD):

Want large number of protons available 

• Scintillator

• Gd-doped water-Cherenkov detector 

• CC:                                     in Liquid Scintillator

(signal from prompt       and final state proton

+ delayed Michel electron)

KamLAND

…spreading the 
meme…
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Decay-At-Rest – Advantages

PiDAR/MuDAR/IsoDAR

• Known energy shape

• Low Energy is nice:
• Coherent scattering cross-section is high (compared to other interactions) 

• (L/E-dependent) oscillation studies

• IBD cross-section (for applications) is well known

• IBD events (for     applications) are easy to record/ID

• Backgrounds can be controlled/understood

• Sometimes come for free in existing facility (e.g. SNS, MLF)

KDAR

• 236 MeV      , low      background

• Sometimes come for free in existing facility (e.g. MLF)

Purity

Energy
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Decay-At-Rest – Challenges

• Isotropic  Lose much 
in unfavorable direction…

• Need very intense proton source!

• We heard a number of very interesting talks about planned 
upgrades and studies for future proton drivers, e.g.: 
• Status of Future High Power Proton Drivers for Neutrino Beams, Mon – Plenary

• Upgrade of J-PARC Accelerator and Neutrino Beamline toward 1.3 MW, Mon – WG3

• Accelerator R&D Toward Proton Drivers for Future Particle Accelerators, Tue – WG3 

• …

• In the second half of this talk, I will present you with another 
possibility: Cyclotrons

• Target design (cooling, activation maintenance) is issue too.

Intensity

500-3000 MeV protons



(Proposed) Experiments
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π+ μ+ K+ AX
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COHERENT

• Talks during this meeting:
• The COHERENT Experiment, Thu: Plenary

• COHERENT constraints on non-standard neutrino interactions, Fri: WG5

• COHERENT and the LMA-dark solution, Fri: WG5

• In a nutshell:
• Uses neutrinos from PiDAR/MuDAR at Oakridge SNS to measure 

Coherent Elastic Neutrino Nucleus Scattering (CEvNS)

• Several detector in a hallway below target dubbed
“neutrino alley”

• Has been measured to have low neutron background

• 8 mwe overburden

• Just recently made the very first measurement of CEvNS in CsI:

http://science.sciencemag.org/content/early/2017/08/02/science.aao0990

http://science.sciencemag.org/content/early/2017/08/02/science.aao0990
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JSNS2

• LSND is THE experiment that drives the high-Δm2 anomalies. J-
PARC’s MLF and ORNL’s SNS are the best (only) places to directly 
study the LSND anomaly.

• Uses PiDAR/MuDAR to test LSND anomaly in a cost-effective and 
timely way at J-PARC

• Aside: KDAR: Collect a large sample (~50k) of mono-energetic 
236 MeV muon neutrinos from KDAR for nuclear probe and cross-
section measurements.

• Production:



Daniel Winklehner, MIT                                                                NUFACT2017                             16

JSNS2

Detection:

• Target volume is Gd-loaded liquid 
scintillator

• Phase 0: 17 tons w/ 193 x 8’’ PMTs

• Future phase: multi-detector (34 t)

• Energy resolution 

• Measures     appearance through 
IBD: 
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JSNS2 - Spectrum & Sensitivity

Status:
• Obtained Stage 1 (of 2) approval from PAC in 2015

• Secured funding for first 17 ton detector module in 2016

• Submitted TDR to J-PARC PAC (seeking Stage 2 approval) in 2017

• Construction has begun! They expect first data in late-2018

(dominant background: intrinsic     ) 
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KPipe

• Use 236 MeV      from KDAR

• L/E: With long detector (100-
120 meters), filled with liquid 
scintillator, one can contain 
oscillation period for with 
mass splitting >1 eV2

• To keep cost down, use 
industrial plastic chemical 
storage containers for vessel 
and instrument with 0.6%
photocoverage (120k SiPM’s)

• Can do this since high-energy 
resolution not required
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KPipe

• Trace out oscillation curve in long detector

• High precision     disappearance search with minimal systematic 
uncertainties from cross-section  and flux

• Cost: 5 M$, Decisive in 6 years of running.

Sensitivities:Signal:
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DAEδALUS
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DAEδALUS
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DAEδALUS/IsoDAR
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IsoDAR

16.5 m
kton scale detector 
(e.g. KamLAND) 

Isotropic source of 
through decay at rest

Search for sterile neutrinos through
oscillations at short distances and
low energy
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IsoDAR

16.5 m
kton scale detector 
(e.g. KamLAND) 

Isotropic source of 
through decay at rest

Search for sterile neutrinos through
oscillations at short distances and
low energy
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IsoDAR

• High Statistics

• Well-understood beam
• 8Li is virtually the only contributor to neutrino production

• 0.016 neutrinos per incoming proton

• Fairly Compact neutrino source
• Sleeve yields production volume ~

σx = σy = 23 cm, σz = 37 cm

• KamLAND detector resolution: 
• Vertex: 

• Energy:

• Conceptual Design Report:
https://arxiv.org/abs/1511.05130

• Working on PDR and Facilities CDR
with KamLAND and RIKEN

https://arxiv.org/abs/1511.05130
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IsoDAR – If we see a signal…

Courtesy of Joshua Spitz



Cyclotron Proton Driver
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π+ μ+ K+ AX
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IsoDAR Driver: Overview

• Desired: 10 mA of p+ on target

• Greatest Challenge: Space Charge

• H2
+ as mitigation. 5 mA H2

+ become 
10 mA of p+ after stripping

Driver                                 MEBT                                    Target                  Detector
Ion Source, LEBT, 

Cyclotron



• Producing the H2
+…

• Filament-Driven Multicusp Ion Source

• Based on: Ehlers and Leung: http://aip.scitation.org/doi/10.1063/1.1137452

• Currently commissioning at MIT (last week: 12 mA/cm2)
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IsoDAR Driver: Ion Source

Faraday Cup

http://aip.scitation.org/doi/10.1063/1.1137452
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IsoDAR Driver: LEBT

• Two options: 
• Conventional Low Energy Beam Transport (demonstrated experimentally)

• Better: RFQ-Direct Injection Project (RFQ-DIP); NSF funded at ~1 M$ 

• Why? 
• Highly efficient bunching

• sorts out protons

• accelerates to injection energy of 70 keV

• Compact (good for underground)

• Parameters:
• 32.8 MHz

• 1.3 m length, 30 cm diameter

• 15 keV to 70 keV accel

• <55 kV vane voltage

http://dx.doi.org/10.1063/1.4935753

http://iopscience.iop.org/article/10.1088/1748-0221/10/10/T10003/pdf

http://dx.doi.org/10.1063/1.4935753
http://iopscience.iop.org/article/10.1088/1748-0221/10/10/T10003/pdf
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IsoDAR Driver: Cyclotron I

re-bunching cell

matching
gentle bunching

accel. & bunching

• Compact Isochronous Cyclotron

• Harmonic 4 ( 32.8 MHz)

• 70-240 kV acceleration

• 4 double-gap cavities

Spiral Inflector
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IsoDAR Driver: Cyclotron II

• Acceleration & Extraction. Space-charge again…

• Septum can tolerate about 200 W of controlled beam loss. 

• If turn separation is small halo formation is large  big problem.

• Space-charge + Isochronous, AVF cyclotron = Vortex motion. Good!

• Needs to be carefully matched, though!



Daniel Winklehner, MIT                                                                NUFACT2017                             33

IsoDAR Driver: Cyclotron III

• Acceleration & Extraction. Space-charge again…

• Septum can tolerate about 200 W of controlled beam loss. 

• If turn separation is small halo formation is large  big problem.

• Space-charge + Isochronous, AVF cyclotron = Vortex motion. Good!

• Needs to be carefully matched, though! + Collimators

17
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IsoDAR Driver: Target I

• Beryllium target with lithium-beryllium sleeve

• 600 kW painted across face ~ 16 cm diameter (~3 kW/cm2)

• Considerable progress on optimization of shape and Li-Be mixture
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IsoDAR Driver: Target II

NSF funded target study on the way at Columbia University!
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IsoDAR – Current Status

• Full Proposal due in fall 2018 (NSF encouraged)

• Path to proposal:
• Conventional Facilities CDR in collaboration with KamLAND

• Determine siting at KamLAND (new option came up!)

• Full set of start-to-end simulations (have all the parts)

• Frozen proton driver design

• In parallel: RFQ-DIP. First ever demonstration of direct injection 
from RFQ into compact cyclotron Will determine path for LEBT



Conclusion / Outlook

• Decay-At-Rest presents some great opportunities!

• As for example demonstrated by COHERENT

• JSNS2 will have first data by the end of 2018

• In addition there are several proposals in various 
design stages:
• KPipe

• DAEδALUS

• IsoDAR

• Cyclotrons are a possible alternative for proton driver

• Full proposal for IsoDAR to be submitted to NSF in 
fall 2018….stay tuned!
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Thank You!
(Bon Appétit :)
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π+ μ+ K+ AX



39

RFQ General Principle

+

+

Front View

Beam

––

Side View

• Continuous focusing like in a series of alternating F/D Electrostatic 
quadrupoles

• Wiggles lead to acceleration and bunching (RF bunching similar to 
cyclotron)

• Same frequency as cyclotron

Ez

Er Z
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RFQ General Principle

+

+

Front View

Beam

––

Side View

Ez

Er Z



Vortex Motion Principle
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Courtesy of Wiel Kleeven (Cyclotrons 2016)



Vortex Motion PSI Injector II
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• If the beam is initially well matched, it curls up into a tight ball with 
only a bit of halo. 

• It is circular in x-y (mid plane of cyclotron)

• This has been seen at PSI Injector II and reproduced in OPAL:



Vortex Motion IsoDAR/DIC
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• Starting at 1.5 MeV/amu (JJ.Yang 2012) a nice round beam shape 
develops

• Beam power on septum <110 W



Vortex Motion in the IsoDAR Cyclotron
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• Starting at 192 keV/amu (within the first turn) (J. Jonnerby, 2016)

• Vortex motion happens for
our H2

+ beam

• Beam separation not yet fully
sufficient, but work in progress
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Our present estimate, with the help of IBA (a Cyclotron Co.)

$18.2 M – not including university-based manpower,

i.e. cost to NSF

with 33% contingency:  $24.2 M

Cost Estimate for the cyclotron:

Costs for the source, to be proposed to NSF

These costs do not include contributions via base grants.

Costs do include project management and EDIA
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DOE-sponsored study on a 2 mA proton machine.

There are 

differences,

but this sets a

rough scale.

Does that cost estimate make sense?
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Cost estimates for the target/sleeve:

Target: $6.2 M,  with 33% contingency, $8.3M

Sleeve:  $5M, with 100% contingency, $10M  

Other costs:  1.5M, with 33% contingency, $2.1M

(Controls, interface to conventional facility, etc.)

Total cost, with contingency: $44.8M

Cost estimates for the medium energy transport:

$0.16M, or with 33% contingency, $0.24M
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Kpipe - Background:

• Small outer-veto layer

• beam-timing

• two-pulse signal

• reduce cosmic ray 
background rate

Prompt Michel


