Charged Lepton Flavor Violation Experiments at Pulsed Beams: (and *g*-2)

R. Bernstein Fermilab

NuFact 2017 Uppsala, Sweden

R. Bernstein (FNAL)

Why Should Anyone Here Care About CLFV?

- Technology is linked:
 - When you make muon neutrinos, you make muons. Neutrino factories/nuSTORM, for example, make muon beams we can use for muon CLFV.
- Physics is linked: (Ana's talk! much deeper than this)
 - oscillations are neutral lepton flavor violation
 - explanations for neutral lepton mixing make predictions for charged lepton mixing; I'll show you examples.
 - g-2: can think of it as probing diagonal elements of a matrix; CLFV studies the off-diagonal

Topics

- Why do CLFV experiments with muons?
- What are the experiments that will be done in pulsed muon beams, and what are their contributions?
 - focus on muon-to-electron conversion: μ - $N \rightarrow e$ -N
 - will not cover muon decay experiments at PSI: MEG (μ → e γ) or Mu3e (μ → 3e), except as needed: see next talk from Iwamoto-san
- A few words about collider CLFV and 3rd generation
- Will show data from first run of FNAL *g*-2!

R. Bernstein (FNAL)

Effective Lagrangian

μe Conversion and $\mu \rightarrow e\gamma$

1) Mass Reach to ~10⁴ TeV for unit coupling

2) *Mu2e/MEG upgrade complementary in loop-dominated physics.*

3) These are discovery experiments

What is Muon to Electron Conversion? $\mu^- N \rightarrow e^- N$

- Muon converts to an electron in the field of a nucleus
- Effectively zero Standard Model background a signal is new physics
- Can measure a signal with SES of ~10⁻¹⁷
 - typical predictions for EWSB predict ~ 10⁻¹⁵
- Experiments to be discussed require pulsed beams

Experimental Signal $\mu^- N \rightarrow e^- N$

8

- A Single Mono-energetic Electron
 - muon falls into 1s state in "target"
- Nucleus coherently recoils off outgoing electron, no breakup
- If N = AI, $E_e \sim 105$. MeV $\sim m_{\mu}$
 - electron energy depends on Z
 - physics in Z-dependence of rate

R. Bernstein (FNAL)

Neutrino Background

 Neutrino Oscillations are the only Standard Model background, except neutrino oscillations are not in the Standard Model

- nobody understood why $\mu \rightarrow e \gamma$ wasn't 10⁻⁴ until we hypothesized two neutrinos $(v_{\mu} \neq v_{e})!$
- told you neutrinos were important to us! R. Bernstein (FNAL) 9

Intrinsic Background: Decay-In-Orbit (DIO)

 Peak and Endpoint free muon decay of Michel Spectrum is at

$$E_{\max} = \frac{m_{\mu}^2 + m_e^2}{2m_{\mu}} \approx 52.8 \text{ MeV}$$

- Far from our 105 MeV signal
- But in presence of nucleus, electron can exchange photon with nucleus
- Endpoint at signal energy (neglecting tiny neutrino mass) so excellent resolution is critical R. Bernstein (FNAL)

Decay-in-Orbit Shape

Szafron 10.5506/APhysPolB.46.2279: Radiative Corrections

Czarnecki: 10.1016/j.physletb.2015.12.008 many other papers

R. Bernstein (FNAL)

Decay-in-Orbit Shape

Szafron 10.5506/APhysPolB.46.2279: Radiative Corrections

R. Bernstein (FNAL)

SINDRUM-II Results

12

Effectively constant beam

- 51 MHz (~20 nsec) repetition rate, ~0.3 nsec pulse
- Small time separation between signal and prompt pion backgrounds
 - bottom plot is first half of 20 nsec, top plot is 2nd half
 - time lowers background R. Bernstein (FNAL)

typical SUSY at 10-15: 40 events vs 0.4 bkg

R. Bernstein (FNAL)

How Do you get x10,000 Improvement?

- Pulsed Beam
 - will cover physics reasons
- World's most intense muon beam:

(K. Lynch, WG3)

- $10^{10} \mu$ /sec at detector under construction right now
- don't have time to discuss accelerator technology
- Superconducting solenoid system

Al target foils: muon converts here

= muons, electrons, pions

Radiative Pion Capture:

 $\pi N \rightarrow \gamma N$ $\gamma \rightarrow e^+e^-$ in foils

Al target foils: muon converts here

= muons, electrons, pions

Radiative Pion Capture:

 $\pi N \rightarrow \gamma N$ $\gamma \rightarrow e^+e^-$ in foils

= muons, electrons, pions

Radiative Pion Capture:

 $\pi N \rightarrow \gamma N$ $\gamma \rightarrow e^+e^-$ in foils

Al target foils: muon converts here

= muons, electrons, pions

Radiative Pion Capture:

 $\pi N \rightarrow \gamma N$ $\gamma \rightarrow e^+e^-$ in foils

= muons, electrons, pions

Radiative Pion Capture:

 $\pi N \rightarrow \gamma N$ $\gamma \rightarrow e^+e^-$ in foils

decays away

= muons, electrons, pions

Radiative Pion Capture:

```
\pi N \rightarrow \gamma N
\gamma \rightarrow e^+e^- in foils
```


decays away

RPC background

decays away

= muons, electrons, pions

Radiative Pion Capture:

```
\pi N \rightarrow \gamma N
\gamma \rightarrow e^+e^- in foils
```

pulsed beam lets us wait (1) until after beam flash, and (2) RPC background decays away

Pulsed Beam Structure

- Wait out pion backgrounds, then open signal window
- Can't "restart the clock" with out-of-pulse protons
- Need 10⁻¹⁰ in-pulse/out-of-pulse ratio (extinction)
 - will monitor during experiment

R. Bernstein (FNAL)

Pulsed vs. "Steady" Beam

- Decay expts, $\mu \rightarrow e\gamma$ and $\mu \rightarrow eee$, want a steady beam: PSI
 - need to minimize backgrounds from coincidences of two decays
 - (Rate)² bkg vs Rate(signal)

- muon-electron conversion wants a pulsed beam: FNAL/J-PARC
 - Many pion-induced backgrounds after proton pulse
 - Take advantage of 26 nsec lifetime to "wait it out"

Beam Flash

- After proton beam strikes target, "flash" of photons and electrons, and many electrons hit stopping target and detector
- Large neutron flux as well that would deaden detectors
- By waiting:
 - activity from beam flash is over
 - And pion backgrounds have decayed by ~10¹¹
- I will mention the flash throughout; has implications for Mu2e and especially for potential upgrades

Dukes, WG4 **Actual Experiments:** Mu2e/COMET

4.6T → B-field gradient → 1T

Target protons at 8 GeV inside superconducting solenoid at 8kW

- Capture muons and guide through S-shaped region to AI stopping target
- Stop muons, let them fall into a "1s" state
- Central hole for passage of remnant muon beam and background suppression

19

R. Bernstein (FNAL)

mu2e.fnal.gov

Mu₂e

Mu2e Solenoid Coil modules at ASG

All 75 km of cable ordered

31/52 coils wound,29 potted.To be machined.

at General Atomics splice between solenoids NuFact 2017

Detector Layout

finding electron track and momentum determination: highest precision, needed to reject decay-in-orbit

Why Annular?

- Reduces beam activity and a background
 - don't want initial "flash" of activity from proton pulse, or remnant muon beam in detector (only ~1/2 of muon beam stops in target)
 - eliminates all but a tiny number of decay-in-orbit background (p ~ qBR in solenoid, Michel e- at small radius);
 - so we're not rejecting 10¹⁷; handful of events within resolution

22

- this will be different from COMET
 - advantages and disadvantages

R. Bernstein (FNAL)

Beam View

Michel

Straw Tube Tracker

- 15 microns of Kapton (human hair = 10–80 microns)
 - ~1 meter long straws, 5 mm diameter with a central goldplated tungsten wire
- ~20,000 straws in a vacuum of 10-4 Torr

23

Calorimeter

- Two CsI crystal disks
 - hole, as in tracker, for passage of muon beam
 - distance chosen such that if signal electron goes down hole, hits next disk

"module 0": 51 crystals

Cosmic Ray Veto

 At 10⁻¹⁷ there's a lot of rare backgrounds; here's one that is surprising but not too rare: 1/day!

• the experiment needs a 99.99% efficient veto (3/4 layers)

25

- in an environment with 10¹⁰ neutrons/cm²/sec from proton pulse
- R. Bernstein (FNAL)

CR Veto Details

- Veto systems are never totally hermetic
- Simulated 250 experiment live-times in targeted regions

UVA

Tracker/Calorimeter/ CRV Test Beam Results

- Energy and time response of 3X3 Csl crystal array
- PE yields of CRV scintillation counters read out by SiPMs
- Tracker Resolution measured and modeled at level of charge cluster formation
- Measured resolutions and properties in the simulations

DOI: 10.1088/1748-0221/12/05/P05007

NuFact 2017

arXiv: 1709.06587, submitted to NIM

R. Bernstein (FNAL)

27

Mu2e Status (Summary)

28

- We have a building!
- Superconducting solenoid production underway
- Beam under construction
- Advanced prototypes/ beginning production for detector elements
- Commissioning 2021
- One hour will equal existing limit; one week ~ 10⁻¹⁵

>200 scientists from 34 institutions NuFact 2017

COMET at J-PARC

29

- Stage I: (2021)
 - x100 better than existing expt, SINDRUM-II
- Stage II
 - x10,000 better
 - same reach as Mu2e
- Important differences:

R. Bernstein (FNAL)

M. Lee.WG4

electron

Electromagne

Calorimeter

C- vs S- for transport
 2nd Bend in detector solenoid

focus on this

Mu2e and COMET

- COMET Staging has obvious advantages for learning as you go
- 2nd Bend in COMET Stage II momentum selects ~ 105 MeV e⁻ only
 - needs no hole since μ^- beam and e^- flash not transmitted
- Mu2e: charge symmetric, e^+e^- the same
 - Backgrounds
 - many background sources of *e*⁻ (RPC!) produce equal *e*⁺*e*⁻
 - Mu2e can measure them with *e*⁺ in situ
 - look "inside the box", no blinding needed since e⁺
 - Mu2e can measure μ - $N \rightarrow e^+N'$, different/unique physics

Berryman, de Gouvea, Kelly, Knobloch PRD95(2017), 115010/ arXiv:1611.0032

R. Bernstein (FNAL)

DeeMe

- DeeMe at J-PARC μN→eN with a 2 x 10⁻¹⁴ SES, x10 better than existing
- production target and conversion target are the same: not like Mu2e or COMET

Calibration Spectra (μ + data)

Teshima, WG4

R. Bernstein (FNAL)

Upgrades and Z-Dependence

R. Bernstein (FNAL)

32

Neutrinos Once Again!

• I left neutrinos to do Mu2e, but can't seem to get away...

PDG 2017

R. Bernstein (FNAL)

Choice of Z for Upgrade

• What Sets Material Choice? Lifetime:

 $\tau\mu(Al) = 864 \text{ ns}$ $\tau\mu(Ti) = 338 \text{ ns}$ $\tau\mu(Au) = 74 \text{ ns}$

NuFact 2017

Mu2e Upgrades

- Studies for x10 improvement with Ti look promising and will be continued; EOI being written (1307.1168)
- We need detector and solenoid improvements
- Longer term: Synergies with WG4

Pasternak, WG4

- FFAG to make a muon beam? (PRISM)
- FNAL PIP-II natural for both pulsed and non-pulsed CLFV, could do μ - $N \rightarrow e$ -N, $\mu \rightarrow e \gamma$, $\mu \rightarrow 3e$, μ -e- $\rightarrow e$ -eat one facility

see Besjes, Clerbaux, Kang, Liventsev, Pais WG4; and kaons: A. Sergi, WG4, NA62

Collider or Muon Beam?

- 1st/2nd generation processes ("solar")
 - Muon experiments orders of magnitude better than colliders in muon-electron processes because we can make beams
- 2nd/3rd,1st/3rd ("atmospheric and θ_{13} ")
 - can't make τ beams, so colliders best there
 - B^* , K^* , $b \rightarrow sll$, $b \rightarrow ll$ and $b \rightarrow s\gamma$ puzzles: lepton universality
 - *pp* or e+e- both have contributions depending on channel;
 e.g. CLFV Higgs decays or *τ* CLFV (ATLAS/CMS, LHCb, and BELLE-II or BES-III; don't overlook e+e- and B mesons)

R. Bernstein (FNAL)

CLFV and Tau Processes

- Advantage:
 - Beyond SM rates can be orders of magnitude higher than in the corresponding muon channel
- Disadvantage
 - τ 's hard to produce:
 - ~10¹¹ τ/yr vs ~10¹¹ μ/sec in muon experiments

 τ 's help pin down models; e.g. Cheng-Sher Ansatz $\sqrt{m_i m_j}$

Holzbauer, WG4

g-2

- Landé g relates magnetic moment to spin precession
- Do we understand how spin and momentum track as a muon circulates in a magnetic field? (Lande g)

$$\omega_{s} = g \frac{eB}{2m}; \ \omega_{c} = \frac{eB}{m} \qquad a_{\mu} = \frac{g-2}{2}$$
$$g \approx 2 \left(1 + \frac{\alpha}{2\pi}\right) \qquad \text{if } g = 2, \ a_{\mu} = 0$$
spin and momentum track

https://journals.aps.org/pr/pdf/10.1103/PhysRev.74.250

R. Bernstein (FNAL)

Storage Ring g-2

$$\int \varphi_{a} = \frac{q}{m} a_{\mu} B$$

$$\varphi_{a} =$$

R. Bernstein (FNAL)

BNL Result

- ~3.6 σ deviation in a_{μ} (theory updated since PRD, exp't unchanged) $a_{\mu}(\exp) = 116,592,089 \ (63) \times 10^{-11}(0.54 \text{ ppm})$ $a_{\mu}(\text{thy}) = 116,591,802 \ (49) \times 10^{-11}(0.42 \text{ ppm})$
- Signal of SUSY? DM?
- No clear experimental problem, must repeat and check
- Attack dominant errors, both theory and experiment

DOI: <u>10.1103/PhysRevD.73.072003</u>

Source of Deviation?

• g-2 terms can come from many sources, not just SUSY

$$a_{\mu}$$
(New Physics) = $O(1) \left(\frac{m_{\mu}}{\Lambda}\right)^2 \times \left(\frac{\delta m_{\mu}}{m_{\mu}}\right)$

for example, Littlest Higgs can affect both g-2 and CLFV R. Bernstein (FNAL) 41

Magic γ

- Problem: E-field needed to keep muons in storage ring
 - but $\vec{\beta} \times \vec{E}$ looks like \vec{B}
 - choose γ to cancel \vec{E} dependence :

"magic
$$\gamma$$
"
$$\vec{\omega}_{a} = -\frac{e}{m} \left[a_{\mu} \vec{B} - \left(a_{\mu} - \frac{1}{\gamma^{2} - 1} \right) \vec{\beta} \times \vec{E} \right] \gamma = 29.3, p_{\mu} = 3.094 \, \text{GeV/c}$$

R. Bernstein (FNAL)

g-2 Goals

- FNAL will improve and check BNL measurement
 - 3.6 $\sigma \rightarrow$ 7-8 σ if central value unchanged
 - Experiment: x21 BNL statistics, x3 lower systematics
 - Theory: ~x2 improvement, will dominate uncertainty BNL FNAL $\Delta a_{\mu}(\exp) = 0.54 \text{ ppm} \Rightarrow 0.14 \text{ ppm}$ $\Delta a_{\mu}(\text{thy}) = 0.42 \text{ ppm} \Rightarrow 0.25 \text{ ppm}$
- muon EDM will improve by x10-x30

First Run: concluded 7 July

First Run: concluded 7 July

- Experiment: understanding field and location within field is central; need constant field and constant detector response.
- First "wiggle plots":
 - precession of spin vs. time on top of muon lifetime: extract g-2 by fitting this curve

44

Muon g-2 / EDM at J-PARC

Ishida, WG4

- Storage ring requires electric field and magic γ
- Use ultra-cold muons (3 keV/c) with $\sigma_{pT} / p \approx 10^{-5}$

$$\vec{\omega}_a = -\frac{e}{m} \left[a_\mu \vec{B} - \left(a_\mu - \frac{1}{\gamma^2 - 1} \right) \vec{\beta} \times \vec{E} \right] - \eta \frac{e}{2m} \left[\frac{\vec{E}}{c} + \vec{\beta} \times \vec{B} \right]$$

• becomes $\vec{\omega}_a = -\frac{e}{m} \left[a_\mu \vec{B} - \frac{\eta}{2} \left(\vec{\beta} \times \vec{B} \right) \right]$

R. Bernstein (FNAL)

Experiment (E34) and Status

- Surface muon beam
- Stopped in aerogel target used to produce muonium (μ⁺e⁻)
 - polarization largely preserved (~80%) for μ⁺ so you can see precession
- Electron stripped using laser
- Transport muon to detector
 R. Bernstein (FNAL)

E34 Status

10.7566/JPSCP.8.025008

- Muonium yield a challenging problem
 - significant advancement, but still x5 below ultimate goal
- Start ~2022 for *σ*_{expt}=0.37 ppm
 - BNL was 0.54 ppm expt; FNAL plans 0.14 ppm
 - EDM: x100 goal

Problem with Review Talks

leave out people's work

cover everything

I've surely done both of these

What I Hope You'll Remember

- Any signal is unambiguously new physics. We need multiple measurements to understand what we do or don't see
 - CLFV, neutrinos, g-2, EDMs, kaon decays, $0v2\beta$, dark matter, collider CLFV are tightly linked and models have to fit *all* the data.
- The experiments are challenging theory and getting better fast, with upgrades on the way.
 - within next 5-10 years: muons improve by 10⁴, x10 in mass scale; Run-II data; e⁺e⁻ and LHCb will probe τ, B, and charm sectors. Kaon system continues to be incisive and unique.
- Neutrinos and charged leptons go together! We share both technology and physics