Synergy and complementarity between neutrino physics and high-intensity frontiers

Ana M. Teixeira

Laboratoire de Physique de Clermont - LPC

NUFACT2017 - Uppsala, 29 September 2017
Neutrino oscillations: gateway to new physics

- **Neutrino oscillations** provided the 1st laboratory evidence of New Physics

 ⇒ **SM must be clearly extended** (or embedded in a larger framework)!

 Several possible models successfully account for ν data
 such extensions might even allow to address SM caveats

 [⇝ presentations by A. De Gouvea, P. Hernandez, S. Antusch, A. Boyarski, ...]

- **Extend the SM**: but how? **Hundreths of (motivated) theoretical constructions!!**
Neutrino oscillations: gateway to new physics

- Neutrino oscillations provided the 1st laboratory evidence of New Physics
 ⇒ SM must be clearly extended (or embedded in a larger framework)!
 Several possible models successfully account for ν data
 such extensions might even allow to address SM caveats
 [⇔ presentations by A. De Gouvea, P. Hernandez, S. Antusch, A. Boyarski, P. Paradisi, ...]

- Gateway to new experimental signals (deviation from SM) in the lepton sector:
 Lepton Number Violation (if Majorana) - $0\nu2\beta$, meson decays, colliders, ...
 Lepton flavour universality violation - weak boson and meson decays. (e.g. R_K)
 Electric dipole moments and Anomalous magnetic moments
 Charged lepton flavour violation

- Rare processes searched for at high-intensity facilities
 ⇒ Learn about neutrino mass models! (At least probe and disfavour...)
Brief summary

- Leptonic high-intensity observables: signs of New Physics

- Observables and experimental status
 - Lepton number violation (observables at high and low energies)
 - Charged lepton flavour violation
 - CP violation: Electric dipole moments
 - Further observables

- Model-independent approaches to New Physics

- Models of neutrino mass generation: signals at high-intensities
 - Ad-hoc extensions
 - Seesaw realisations
 - Larger frameworks

- Overview & discussion
Leptonic observables: signs of New Physics

► In the **Standard Model:** (strictly) **massless neutrinos**
 - conservation of total lepton number & lepton flavour
 - tiny leptonic EDMs (at 4-loop level.. $d_e^{\text{CKM}} \leq 10^{-38} \text{e cm}$)

► Extend the SM to accommodate $\nu_\alpha \leftrightarrow \nu_\beta$

Assume **most minimal** extension SM_{m_ν}

$[\text{SM}_{m_\nu} = \text{“ad-hoc”} \ m_\nu \ (\text{Dirac}), \ U_{\text{PMNS}}]$

► In the SM_{m_ν}: **(total) Lepton number conserved**; what about lepton flavours? And CP?

► SM_{m_ν} - cLFV possible??

\[
\text{BR}(\mu \rightarrow e\gamma) \propto \left| \sum U_{\mu i}^* U_{ei} \frac{m^{\nu_i}}{M^2_W} \right|^2 \sim 10^{-54}
\]

[Petcov, ’77]

Possible - yes... but not observable!!

► SM_{m_ν} - observable EDMs?

Contributions from δ_{CP} (2-loop)...

| \text{leptonic EDMs} | $d_e^{\text{lept}} \leq 10^{-35} \text{e cm}$ |
Leptonic observables: signs of New Physics

- Explore the underlying synergy between ν physics and high-intensity observables to constrain the New Physics model at the origin of neutrino phenomena.

- And keep an open eye on collider searches and new oscillation phenomena! (not addressed here...)
Leptonic observables: current status

[≅ WG4 presentations and reviews, Monday-Friday!]
Leptonic dipole moments

► Electric dipole moments of charged leptons

\[\mathcal{L}_{\text{EDM}} = -i/2 \, d_\ell \, \bar{\ell} \sigma^{\mu\nu} \gamma_5 \ell F_{\mu\nu} \]

<table>
<thead>
<tr>
<th>EDM (e cm)</th>
<th>Current bounds</th>
<th>Future sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.9 × 10^{-19} [Muon g-2]</td>
<td>(\mathcal{O}(10^{-21})) [g-2/EDM Coll.]</td>
</tr>
<tr>
<td>[</td>
<td>4.5 × 10^{-17} [Belle]</td>
<td>-</td>
</tr>
<tr>
<td>[</td>
<td>2.5 × 10^{-17} [Belle]</td>
<td>-</td>
</tr>
</tbody>
</table>

► (Anomalous) magnetic moments of charged leptons

\[\bar{\mu} = \frac{g_\ell}{2 \, m_\ell} \, \bar{S} \Rightarrow a_\ell = \frac{1}{2} \, (g_\ell - 2) \]

- \(a_\ell \): Best determination of \(\alpha \)
 - \(a_\ell^{\text{the}} = 0.001159652181643(764) \) \(\leftrightarrow 5^{\text{th}} \) order in QED (12,672 diags)!
 - \(a_\ell^{\text{exp}} = 0.00115965218073(28) \)

- \(a_\mu \): Current tension between theory and experiment
 - Very sensitive probe of New Physics close to \(\Lambda_{\text{EW}} \)
 - If \(\delta a_\mu \) confirmed \(\sim \) discrepancies for \(a_{e,\tau} \) and \(d_\ell \! \)

- \(a_\tau \): Short tau lifetime
 - \(a_\tau^{\text{the}} = 0.00117721(5) \) [0701260]
 - \(-0.007 < a_\tau^{\exp} < 0.005 \) [1601.07987]
Lepton number violation: $\Delta L = 2$ observables and searches

- Neutrinoless double beta decays

![Graph showing neutrinoless double beta decays](image)

| Experiment | $|m_{\text{ee}}|$ (eV) |
|-------------------------------------|------------------------|
| EXO-200 (4 yr) | 0.075 - 0.2 |
| nEXO (5 yr) | 0.012 - 0.029 |
| nEXO (5 yr + 5 yr w/ Ba tagging) | 0.005 - 0.011 |
| KamLAND-Zen (300 kg, 3 yr) | 0.045 - 0.11 |
| GERDA phase II | 0.09 - 0.29 |
| CUORE (5 yr) | 0.051 - 0.133 |
| SNO+ | 0.07 - 0.14 |
| SuperNEMO | 0.05 - 0.15 |
| ... | ... |

- LNV in semileptonic tau and/or meson decays

<table>
<thead>
<tr>
<th>LNV decay</th>
<th>Current Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>$K^- \to \ell^- \ell^+ \pi^+$</td>
<td>6.4×10^{-10} 1.1×10^{-9}</td>
</tr>
<tr>
<td>$D^- \to \ell^- \ell^+ \pi^+$</td>
<td>1.1×10^{-6} 2.2×10^{-8}</td>
</tr>
<tr>
<td>$D^- \to \ell^- \ell^+ K^+$</td>
<td>9.0×10^{-7} 1.0×10^{-5}</td>
</tr>
<tr>
<td>$B^- \to \ell^- \ell^+ K^+$</td>
<td>2.3×10^{-8} 4.0×10^{-9}</td>
</tr>
<tr>
<td>$B^- \to \ell^- \ell^+ \rho^+$</td>
<td>3.0×10^{-8} 4.1×10^{-8}</td>
</tr>
<tr>
<td>$B^- \to \ell^- \ell^+ D^+$</td>
<td>1.7×10^{-7} 4.2×10^{-7}</td>
</tr>
</tbody>
</table>

- Current Bound

<table>
<thead>
<tr>
<th>LNV decay</th>
<th>$\ell = e$</th>
<th>$\ell = \mu$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\tau^- \to \ell^+ \pi^+ \pi^-$</td>
<td>2.0×10^{-8} 3.9×10^{-8}</td>
<td></td>
</tr>
<tr>
<td>$\tau^- \to \ell^+ \pi^- K^-$</td>
<td>3.2×10^{-8} 4.8×10^{-8}</td>
<td></td>
</tr>
<tr>
<td>$\tau^- \to \ell^+ K^+ K^-$</td>
<td>3.3×10^{-8} 4.7×10^{-8}</td>
<td></td>
</tr>
</tbody>
</table>
Signals of Lepton Flavour Violation

- Neutrino oscillations \([\nu\text{-dedicated experiments}]\)

- Rare leptonic decays and transitions \([\text{high-intensity facilities}]\)
 \[\ell_i \rightarrow \ell_j \gamma, \ell_i \rightarrow 3\ell_j, \text{mesonic } \tau \text{ decays...}\]
 nucleus assisted \(\mu - e\) transitions (also \(\text{LNV!}\)), Muonium channels...

- Meson decays: lepton flavour violating decays - \(B \rightarrow \tau \mu, ...\) \([\text{high-intensity; LHCb}]\)
 cLFV & Lepton Number violating decays - \(B \rightarrow D e^- \mu^- , ...\)
 violation of lepton flavour universality (e.g. \(R_K\))

- Rare (new) heavy particle decays (typically model-dependent) \([\text{colliders}]\)
 SM boson decays: \(H \rightarrow \tau \mu, Z \rightarrow \ell_i \ell_j\)
 SUSY \(\tilde{\ell}_i \rightarrow \ell_j \chi^0\); FV KK-excitation decays; ...
 LFV final states: for example, \(e^\pm e^- \rightarrow e^\pm \mu^- + E_{\text{miss}}\)

- And many others ... all absent in the SM!
Searches for cLFV: where do we stand?

<table>
<thead>
<tr>
<th>Observable</th>
<th>Bound (90% C.L.)</th>
<th>future sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{BR}(\mu \rightarrow e\gamma)$</td>
<td>4.2×10^{-13}</td>
<td>4×10^{-14} [MEG II]</td>
</tr>
<tr>
<td>$\text{BR}(\mu \rightarrow 3e)$</td>
<td>1.0×10^{-12}</td>
<td>10^{-15} [Mu3e Phase I]</td>
</tr>
<tr>
<td>$\text{BR}(\mu^{-} e^{-} \rightarrow \mu^{-} e^{-})$</td>
<td>7×10^{-13} (Au)</td>
<td>10^{-14} [SiC, DeeMe]</td>
</tr>
<tr>
<td>$\text{BR}(\mu^{-} e^{-} \rightarrow \mu^{-} e^{-})$</td>
<td>7×10^{-13} (Au)</td>
<td>10^{-17} [Al, Mu2e/COMET]</td>
</tr>
<tr>
<td>$\text{P}(\text{Mu} \rightarrow \text{Mu})$</td>
<td>8.3×10^{-11}</td>
<td>10^{-14} [FNAL ?]</td>
</tr>
</tbody>
</table>

[\(\Rightarrow \) Y. Ulrich (NLO)!]

[\(\Rightarrow \) See WG4 contributions
Monday-Friday!]

Further bounds: $\text{BR}(Z \rightarrow l_i l_j)$, ..., $\text{BR}(K, D, B \rightarrow (h) l_i l_j)$, ...
[\(\Rightarrow \) presentation by R. Bernstein!]

\[90\% \text{ CL upper limits on } \tau \text{ LFV decays}\]
Model independent approach

Neutrinoless radiative decay
\[
\text{Br} (\mu \rightarrow e\gamma) = \frac{\alpha e m_\mu^5}{12\pi \Lambda^4 G_\mu} \left(|C_L^D|^2 + |C_R^D|^2 \right).
\]

Neutrinoless three-body decay
\[
\text{Br}(\mu \rightarrow 3e) = \frac{\alpha^2 e m_\mu^6}{12\pi \Lambda^4 G_\mu} \left(|C_L^D|^2 + |C_R^D|^2 \right) \left(8 \log \left[\frac{m_\mu}{m_e} \right] - 11 \right) \\
+ \frac{m_\mu^3}{3(16\pi)^3 \Lambda^4 G_\mu} \left(|C_{e e}^{LL}|^2 + 16 |C_{e e}^{VV LL}|^2 + 8 |C_{e e}^{V LR}|^2 \right) \\
+ |C_{e e}^{RR}|^2 + 16 |C_{e e}^{V RR}|^2 + 8 |C_{e e}^{V RL}|^2 \right).
\]

[presentation by G. M. Pruna]
Accounting for neutrino masses and mixings: SM extensions ...

... and high-intensity observables
Theoretical frameworks

- Simplified “toy models” for phenomenological analyses: $\text{SM} + \nu_s$

 “ad-hoc” construction (no specific assumption on mechanism of mass generation)

 encodes the effects of N additional sterile states (well-motivated NP candidates)

 in a single one

 [Not to be confused with oscillation anomaly solution!...]

- Complete SM extensions accounting for ν masses and mixings

 Models of ν-mass generation - Standard seesaws [type I, type II, type III] & variants

 - Low-scale, νMSM, Inverse Seesaw (ISS), ...

 - Additional states: Multi-Higgs doublet models, leptoquarks, Z', vector-like, ...

 - Extended frameworks: extra dimensions, ...

 - SUSY seesaw,

 - Left-Right models, GUTs, ...

- High-intensity probes to distinguish between them!
Minimal toy-model: $\text{SM} + \nu_s$

Assuming that New Physics is encoded into such a simple model, what can we expect and learn?
“Toy model” for phenomenological analyses: SM + ν_s

- **Assumptions:** 3 active neutrinos + 1 sterile state
 - interaction basis \leftrightarrow physical basis
 - $n_L = (\nu_{Le}, \nu_{L\mu}, \nu_{L\tau}, \nu_s)^T$
 - $n_L = U_{4\times4} \nu$
 - $U_{4\times4}^T M U_{4\times4} = \text{diag}(m_{\nu_1}, ..., m_{\nu_4})$
 - “Majorana mass”: $\mathcal{L}_{\text{toy}} \sim n_T C M n_L$

- **Active-sterile mixing** $U_{\alpha i}$:
 - rectangular matrix $\leftarrow U = U|_{3\times4}$
 - $U_{4\times4} = \begin{pmatrix}
 U_{e1} & U_{e2} & U_{e3} & U_{e4} \\
 U_{\mu1} & U_{\mu2} & U_{\mu3} & U_{\mu4} \\
 U_{\tau1} & U_{\tau2} & U_{\tau3} & U_{\tau4} \\
 U_{s1} & U_{s2} & U_{s3} & U_{s4}
 \end{pmatrix}$

- **Left-handed lepton mixing** \tilde{U}_{PMNS}:
 - 3×3 sub-block, non-unitary!

- **Physical parameters:** 4 masses [3 light (mostly active) + 1 heavier (mostly sterile) states]
 - 6 mixing angles [$\theta_{12}, \theta_{23}, \theta_{13}, \theta_{i4}$] and 6 phases [(3 Dirac and 3 Majorana)]

- **Modified charged (W^\pm) and neutral (Z^0) current interactions:**
 - $\mathcal{L}_{W^\pm} \sim -\frac{g_w}{\sqrt{2}} W^-_\mu \sum_{\alpha=e,\mu,\tau} \sum_{i=1}^{3+n_S} U_{\alpha i} \bar{\ell}_\alpha \gamma^\mu P_L \nu_i$
 - $\mathcal{L}_{Z^0} \sim -\frac{g_w}{2\cos\theta_w} Z_\mu \sum_{i,j=1}^{3+n_S} \bar{\nu}_i \gamma^\mu \left[P_L (U^T U)_{ij} - P_R (U^T U)_{ij}^* \right] \nu_j$
Sterile neutrinos: impact for lepton properties

▶ Leptonic CP violation: electric dipole moments

▶ Majorana (and Dirac) phases ⇒ lepton EDMs

▶ Non-vanishing contributions: at least two sterile ν

▶ $|d_e|/e \geq 10^{-30}$ cm for $m_{\nu_4,5} \sim [100 \text{ GeV}, 100 \text{ TeV}]$

[Abada and Toma, '15]

▶ Independent of active-sterile mixings

Majorana contribution is dominant!

▶ EDM observation: suggest new sources of CPV

⇒ Majorana νs? ⇔ Leptogenesis??

▶ Sterile states beyond (direct) collider reach...
Sterile neutrinos: impact for LNV observables

- **Lepton number violation: $0\nu 2\beta$ decays**
 - ν_s can strongly impact predictions for $|m_{ee}|$
 - \Rightarrow augmented ranges for effective mass (*IO and NO*)

- **Observation of $0\nu 2\beta$ signal** in future experiments
 - does not imply Inverted Ordering for light ν_s
 - [Abada, De Romeri and AMT, '14; ...; Giunti et al, '15 ←]

- **Lepton Number Violation in meson and τ decays**
 - If ν_s produced on-shell,
 - resonant enhancement of LNV decays
 - $M_1^- \to M_2^+ \ell^- \ell^-$ and $\tau^- \to \ell^+ M_1^- M_2^-$
 - [Abada, De Romeri, Lucente, Toma, AMT, to appear]
Sterile neutrinos: impact for LNV meson and tau decays

- In addition to further constraining the active-sterile mixings [future sensitivities...]
- LNV meson and tau decays offer possibility to infer information on $m_{\nu}^{\ell_i \ell_j}$

$$m_{\nu}^{\ell_\alpha \ell_\beta} \equiv \left| \sum_{i=1}^{4} \frac{U_{\alpha i} m_i U_{\beta i}}{1-m_i^2/p_{12}^2 + i m_i \Gamma_i/p_{12}^2} \right|$$

[Abada, De Romeri, Lucente, Toma, AMT, to appear]
ν_s and cLFV: radiative and 3 body decays

- **Radiative decays:** $\ell_i \rightarrow \ell_j \gamma$

 - Consider $\mu \rightarrow e\gamma$

 - For $m_4 \gtrsim 10$ GeV sizable ν_s contributions
 .. but precluded by other cLFV observables

- **Three-body decays** $\ell_i \rightarrow 3\ell_j$ (■) and conversion in Nuclei $\mu - e$ (■)

 - For sterile states above EW scale, strongly dominated by Z penguin contributions
Sterile neutrinos: cLFV in “muonic atoms”

- cLFV $\mu^- - e^-$ conversion: $\mu^- + (A, Z) \rightarrow e^- + (A, Z)$

- Muonic atom decay: $\mu^- e^- \rightarrow e^- e^-$
 Coulomb interaction increases overlap between Ψ_{μ^-} and Ψ_{e^-}
 Rate strongly enhanced in large Z atoms [Uesaka et al, ’15-’16]

- cLFV in muonic atoms from ν_s:
 $\mu^- e^- \rightarrow e^- e^-$ (■) vs
 $\mu^- e$ conversion (■) in Aluminium

- For Aluminium, $\text{CR}(\mu^- e)$ has
 stronger experimental potential
 .. consider “heavy” targets to probe
 $\text{BR}(\mu^- e^- \rightarrow e^- e^-)$

 “3+1” toy model [Abada, De Romeri and AMT, ’16]
Sterile neutrinos and cLFV at higher energies

- cLFV Z decays at FCC-ee vs 3 body decays $\ell_i \to 3 \ell_j$

[~ presentation by S. Antusch]

- Potentially observable at Future Circular Collider

- “3+1” toy model

[Abada et al, ’15]

- Recall: $\ell_i \to 3 \ell_j$ dominated by Z penguins

- Strong correlation between $Z \to \mu \tau$ and $\tau \to 3 \mu$

- Probe $\mu - \tau$ cLFV beyond SuperB reach

- Complementarity probes of ν_s cLFV at low- and high energies!
Models of neutrino mass generation
The seesaw mechanism

★ Seesaw mechanism: explain small ν masses with “natural” couplings via new dynamics at “heavy” scale

\[\nu_L \nu_L H H \]

\[\nu_R \text{ (fermion singlet)} \]

\[\Delta \text{ (scalar triplet)} \]

\[\Sigma_R \text{ (fermion triplet)} \]

\[\frac{1}{\Lambda} \]

“Seesaw mechanism”

Type I

Type II

Type III

Observables: depend on powers of \(Y^\nu \) \(\sim \) large rates \(\Rightarrow \) sizable \(Y^\nu \)

and on the mass of the (virtual) NP propagators

Fermionic seesaws: \(Y^\nu \sim \mathcal{O}(1) \Rightarrow M_{\text{new}} \approx 10^{13-15} \text{ GeV}! \)

Suppression of rates due to the large mass of the mediators!

Low scale seesaws: rich phenomenology at high-intensities! (and also at LHC)
Low scale type I seesaw

- Addition of 3 “heavy” Majorana RH neutrinos to SM; \(\text{MeV} \lesssim m_{N_i} \lesssim 10^{\text{few}} \text{TeV} \)

- Spectrum and mixings: \(m_\nu \approx -v^2 Y_\nu^T M_N^{-1} Y_\nu \) \(U^T M_\nu^{6 \times 6} U = \text{diag}(m_i) \)
 \[
 U = \begin{pmatrix}
 U_{\nu\nu} & U_{\nu N} \\
 U_{N\nu} & U_{NN}
 \end{pmatrix}
 \]
 \(U_{\nu\nu} \approx (1 - \varepsilon) U_{\text{PMNS}} \) \(\text{Non-unitary leptonic mixing } \tilde{U}_{\text{PMNS}} \)

- Heavy states do not decouple \(\Rightarrow \text{modified neutral and charged leptonic currents} \)

- Rich phenomenology at high-intensity/low-energy and at colliders!

[Alonso et al, 1209.2679] (see also Dinh et al, '12-'14)
Low scale: Inverse Seesaw (ISS)

- Addition of 3 "heavy" RH neutrinos and 3 extra "sterile" fermions X to the SM

$$\mathcal{M}_{\text{ISS}}^{9\times9} = \begin{pmatrix} 0 & Y_{\nu}v & 0 \\ Y_{\nu}^T v & 0 & M_R \\ 0 & M_R & \mu_X \end{pmatrix} \Rightarrow \begin{cases}
3 \text{ light } \nu : m_\nu \approx \frac{(Y_{\nu}v)^2}{(Y_{\nu}v)^2 + M^2_R} \mu_X \\
3 \text{ pseudo-Dirac pairs } : m_{N^\pm} \approx M_R \pm \mu_X
\end{cases}$$

- Non-unitarity $\tilde{U}_{\text{PMNS}} \Rightarrow$ modified neutral and charged leptonic currents

- New (virtual) states & modified couplings: cLFV, non-universality, signals at colliders!

- cLFV in muonic atoms: $\mu^- e^- \to e^- e^-$ vs $\mu - e$ conversion in Aluminium

[Log BR($\mu e \to ee$)]

[Abada, DeRomeri, AMT, '15]
Low scale: Inverse Seesaw (ISS)

- cLFV Z decays at FCC-ee vs 3 body decays $\ell_i \to 3 \ell_j$

 ![Graph showing BR($Z \to \mu \tau$) vs BR($\tau \to \mu \mu \mu$)]

 - Still dominated by Z penguin contributions
 - Other cLFV bounds preclude large $\text{BR}(\tau \to 3\mu)$...
 - Contrary to “3+1 toy model”, flavour textures & parameters constrained by ν data...
 - Allows to probe $\mu - \tau$ cLFV beyond SuperB reach

- Leptonic CP violation: EDMs
 - ISS contains additional sources of CPV!
 - Majorana contributions nearly negligible
 - Heavy steriles form pseudo-Dirac pairs
 - Electron EDM beyond future sensitivity...

 ![Graph showing electron EDM versus m_i]
The “triplet” seesaws

★ Weinberg operator realised via triplet scalars Δ (type II) or fermions Σ (type III)

► Very distinctive signatures for numerous observables: cLFV example

Type I: cLFV transitions at loop level (radiative, 3-body, conversion in Nuclei)

Type II: $\ell_i \to \ell_j \gamma$ & $\mu - e, N$ at loop level; 3-body decays $\ell_i \to 3\ell_j$ at tree level!

Type III: 3-body decays and coherent conversion at tree-level! $\ell_i \to \ell_j \gamma \oplus$ loop...

► Use ratios of observables to constrain and identify mediators!

Type I

Type II

Type III

$$\text{BR}(\mu \to e\gamma) / \text{BR}(\mu \to 3e) = 1.3 \times 10^{-3}$$

$$\text{BR}(\tau \to \mu\gamma) / \text{BR}(\tau \to 3\mu) = 1.3 \times 10^{-3}$$

$$\text{BR}(\mu \to e\gamma) / \text{CR}(e - \mu, Ti) = 3.1 \times 10^{-4}$$

[Hambye, 2013]
The “triplet” seesaws

- **cLFV bounds on the seesaw mediators:** a comparative (“effective”) view

 \(m_N \lesssim 100 \text{ TeV} \times \left(\frac{10^{-14}}{\text{BR}(\mu \rightarrow e\gamma)} \right)^\frac{1}{4} \times f(Y_{\ell_i \ell_j}^\nu) \)

 \(m_N \lesssim 300 \text{ TeV} \times \left(\frac{10^{-16}}{\text{BR}(\mu \rightarrow 3e)} \right)^\frac{1}{4} \times f(Y_{\ell_i \ell_j}^\nu) \)

 \(m_N \lesssim 2000 \text{ TeV} \times \left(\frac{10^{-18}}{\text{CR}(\mu - e, Ti)} \right)^\frac{1}{4} \times f(Y_{\ell_i \ell_j}^\nu) \)

 \(m_\Delta \lesssim 70 \text{ TeV} \times \left(\frac{10^{-14}}{\text{BR}(\mu \rightarrow e\gamma)} \right)^\frac{1}{4} \times f(Y_{\ell_i \ell_j}^\Delta) \)

 \(m_\Delta \lesssim 2200 \text{ TeV} \times \left(\frac{10^{-16}}{\text{BR}(\mu \rightarrow 3e)} \right)^\frac{1}{4} \times f(Y_{\ell_i \ell_j}^\Delta) \)

 \(m_\Delta \lesssim 600 \text{ TeV} \times \left(\frac{10^{-18}}{\text{CR}(\mu - e, Ti)} \right)^\frac{1}{4} \times f(Y_{\ell_i \ell_j}^\Delta) \)

 \(m_\Sigma \lesssim 100 \text{ TeV} \times \left(\frac{10^{-14}}{\text{BR}(\mu \rightarrow e\gamma)} \right)^\frac{1}{4} \times f(Y_{\ell_i \ell_j}^\Sigma) \)

 \(m_\Sigma \lesssim 1600 \text{ TeV} \times \left(\frac{10^{-16}}{\text{BR}(\mu \rightarrow 3e)} \right)^\frac{1}{4} \times f(Y_{\ell_i \ell_j}^\Sigma) \)

 \(m_\Sigma \lesssim 20000 \text{ TeV} \times \left(\frac{10^{-18}}{\text{CR}(\mu - e, Ti)} \right)^\frac{1}{4} \times f(Y_{\ell_i \ell_j}^\Sigma) \)

 \(f(Y_{\ell_i \ell_j}) \sim \text{combination of } \sqrt{Y} \sqrt{Y} \)
Embedding the seesaw in larger frameworks
Supersymmetric type I seesaw

- Large $Y\nu$: sizable contributions to cLFV observables

 cLFV driven by the exchange of virtual SUSY particles

- $Y\nu$ unique source of LFV: synergy of high- and low-energy observables

- Isolated cLFV manifestations ⇒ disfavours SUSY seesaw hypothesis

- "Correlated" cLFV observations ⇒ strengthen SUSY seesaw hypothesis!

 $\frac{\Delta m_{\tilde{\ell}}}{m_{\tilde{\ell}}} (\tilde{e}_L, \tilde{\mu}_L) \gtrsim \mathcal{O}(0.5\%)$ and $\mu \to e\gamma |_{\text{MEG}} \checkmark$!! Hints on the seesaw scale: $M_R \sim 10^{14}$ GeV
Hints of an organising principle: SUSY seesaw and GUTs

★ Supersymmetric Grand Unified Theories

► Reduce arbitrariness of Y^q, Y^ℓ, Y^ν, ...: ⇒ increase predictivity and testability!

► SU(5) + RH neutrinos SUSY GUTs

Correlated CP violation and flavour observables
in lepton and hadron sectors

[Buras et al, 1011.4853]

► SO(10) type II SUSY seesaw

Leptogenesis motivated

highly correlated cLFV observables!

[Calibbi et al, 0910.0337]
Further possibilities
Vector-like leptons: an example

- **Massive vector-like fermions** present in well-motivated SM extensions: composite Higgs models, warped extra dimensions, ...

- **Global view**: generic set-up (composite Higgs inspired), 3 generations of L_i^V and E_i^V massive neutrinos from additional ν_R and vector-like partners

- **cLFV** parametrised by small set of couplings

 \Rightarrow correlated observables!

\[
\frac{\text{BR}(h\to\ell_i\ell_j)}{\text{BR}(\ell_i\to\ell_j\gamma)} \approx \frac{4\pi}{3\alpha} \frac{\text{BR}(h\to\ell_i\ell_i)_{\text{SM}}}{\text{BR}(\ell_i\to\ell_j\nu_i\bar{\nu}_j)}
\]

- **Synergy** between **FV Higgs decays and cLFV**! Flavour conserving EDM and δa_μ as well!

[Falkowski et al, '14]
The flavour puzzle: neutrino masses from flavour symmetries

★ Texture of Y from spontaneous or explicit breaking of flavour symmetry G_f

- Continuous flavour symmetries: minimal Abelian case $\Rightarrow G_f = U(1)_{L_e+L_\mu} \times U(1)_{L_\tau}$

\[
Y^\nu = \begin{pmatrix}
\epsilon_e & ae^{-i\pi/4} & ae^{i\pi/4} \\
\epsilon_\mu & be^{-i\pi/4} & be^{i\pi/4} \\
\epsilon_\tau & \kappa_1 & \kappa_2
\end{pmatrix}
\]

\[
BR(\mu \rightarrow e\gamma) \approx 8.0 \times 10^{-4} \times a^2 b^2 \times \left(\frac{\Lambda_{EW}}{M_R}\right)^4
\]

[Deppisch and Pilaftsis, '10]

- Discrete flavour symmetries: $G_f \sim \Delta(3n^2)$ type

Flavour and CP symmetries \Rightarrow lepton mixings

& low/high energy CP phases

Strong predictions for $0\nu 2\beta$ decay m_{ee}

Interplay of low-energy CP phases and BAU

[Deppisch and Pilaftsis, '10]
Concluding remarks
Neutrino physics and high-intensity observables

- **Neutrinos** remain a very open question in particle physics, astrophysics and cosmology.
- **Dedicated facilities** will provide crucial data ... but many questions (likely) remain!
- **Confirmed observations** and several "tensions" suggest the need to go beyond the SM.
 - In the lepton sector, ν-masses provided the 1st laboratory evidence of NP.
 - Many experimental "tensions" nested in lepton-related observables.

- **Very brief overview** of a subset of observables
 - [other observables: muonium, LFUV, in-flight conversion..., $\mu N (eN) \stackrel{H}{\rightarrow} \tau X$, ...]
 - [→ M. Yamanaka]
 - and sub-sub set of New Physics models aiming at accounting for ν phenomena!

- **Lepton physics** might offer valuable hints in constructing and probing NP models.
 - New Physics can be manifest via cLFV, EDMs, LNV, ... before direct discovery!
 - High-intensity data can provide information on the underlying NP model.
Backup
Sterile neutrinos: Muonium cLFV

- **Muonium**: hydrogen-like Coulomb bound state ($e^- \mu^+$); free of hadronic interactions!

- **Mu → Mu** conversion

 Spontaneous conversion of a ($e^- \mu^+$) into ($e^+ \mu^-$)

- Also consider cLFV Mu decay: $\text{Mu} \rightarrow e^+ e^-$

- **Large values** of $G_{\mu \mu}$ precluded due to conflict with $\text{CR} (\mu - e, \text{Au})$ and $\text{BR} (\mu \rightarrow 3e)$

 Within **FNAL experimental reach**??

- **Maximal values** $\text{Mu} \rightarrow e^+ e^- \sim \mathcal{O}(10^{-25})$

 Within experimental reach?

 "3+1" toy model [Abada, De Romeri and AMT, '15]
cLFV in-flight conversion

- Energetic beam of leptons (e, μ) directed on fixed (dense) target

$$e + N \rightarrow \mu + N, \ e + N \rightarrow \tau + N \text{ and } \mu + N \rightarrow \tau + N$$

$$N_{\text{signal}}(\ell_i \rightarrow \ell_j) = N_{\ell_i} \times \sigma(\ell_i \rightarrow \ell_j) \times T_m \times N_{p+n} \times BR(\tau \rightarrow \mu\nu\nu)$$

- $\sigma(\ell_i \rightarrow \ell_j)$: elastic interactions with nuclei, Z-penguin dominated cLFV

Large values of $\ell_i \rightarrow \ell_j$ precluded due to conflict with CR($\mu - e$, Au) and $BR(\ell_j \rightarrow 3\ell_i)$

N_{signal} beyond experimental sensitivity - even for very intense lepton beams
cLFV and ν_8: ν_{MSM}

- **Minimal “type I seesaw-like” extension**: SM + 3 ν_R

 New states account for m_ν^{light}, offer DM candidate, allow for BAU via leptogenesis

 ⇒ tiny Yukawa couplings; heavily constrained parameter space (th, cosmo, exp..)

![Graph showing constraints on U^2 vs. M] [Canetti et al, '13]

- **ν_{MSM}: very difficult prospects for cLFV**

![Graph showing constraints on BR($\mu e \rightarrow ee$) vs. M] [Abada et al, '15]
Hints of an organising principle: ν in Left-Right models

★ Minimal Left-Right extension of the SM (non-SUSY)

► extend SM gauge group: $\text{SU}(2)_L \otimes \text{U}(1)$ \Rightarrow $\text{SU}(2)_L \otimes \text{SU}(2)_R \otimes \text{U}(1)_{B-L}$

► RH neutrinos automatically included

$$M_\nu \approx \begin{pmatrix} y_{MvL} & y_{DM_{EW}} \\ y_{TM_{EW}} & y_{MvR} \end{pmatrix}$$

bi-doublet and triplet Higgs; new Z_R, W_R bosons

► New contributions to cLFV observables at low- and high-energies

► If LHC \sqrt{s} above heavy neutrino threshold:

dilepton LFV signatures $pp \rightarrow W_R \rightarrow e^\pm \mu^\mp + 2 \text{ jets}$

► Complementarity studies of LHC signatures and low-energy rare decays

[Das et al, 1206.0656]
Hints of an organising principle: SUSY seesaw and GUTs

★ Supersymmetric Grand Unified Theories - “Type I”

► Reduce arbitrariness of Yukawa couplings Y^q, Y^ℓ, Y^ν...

► SU(5) + RH neutrinos SUSY GUTs

► Correlated CP violation and flavour violating observables

 in lepton and hadron sectors!

[Buras et al, 1011.4853]
Model-independent approach:
New Physics and low-energy observables
Models of New Physics: some more examples

“Geometric” flavour violation - extra dimensional Randall-Sundrum models

\[e - \mu \text{ bounds constrain NP scale beyond LHC reach: } T_{KK} \gtrsim 4 \text{ TeV (} \sim KK^{(1st)} \gtrsim 10 \text{ TeV) } \]

future sensitivities: exclude (general) anarchic RS models up to 8 TeV (\(\sim m_{KK-g} \gtrsim 20 \text{ TeV) } \)

[Beneke et al, 1508.01705]

cLFV and compositness - Little(st) Higgs

distinctive patterns for ratios of observables (testability!)

\[BR(\mu \rightarrow e\gamma) \] - disfavour important regions in parameter space!

[Blanke et al, ’09]

And more observables to test them!

[From A. West, PIC2015]
Effective approach

- \mathcal{L}^{eff} - “vestigial” (new) interactions of “heavy” fields with SM at low-energies

$$\mathcal{L}^{\text{eff}} = \mathcal{L}^{\text{SM}} + \sum_{n\geq 5} \frac{1}{\Lambda^{n-4}} C^n (g, Y, ...) \mathcal{O}^n (\ell, q, H, \gamma, ...)$$

- Dimension 5 - $\Delta \mathcal{L}^5$ (Weinberg): neutrino masses (LN_ν, $\Delta L = 2$)

 a unique operator $\mathcal{O}^5_{ij} \sim (L_i H)(H L_j)$

- Dimension 6 - $\Delta \mathcal{L}^6$: kinetic corrections, cLFV, EWP tests, EDMs, t physics...

 some examples (dipole and 3-body)

 Dipole: $\mathcal{O}^6_{\ell_i \ell_j \gamma} \sim L_i \sigma^{\mu \nu} e_j H F_{\mu \nu}$
 radiative decays $\ell_i \rightarrow \ell_j \gamma$, χ-flipping ℓ^\pm dipole moments, ...

 4 fermion: $\mathcal{O}^6_{\ell_i \ell_j \ell_k \ell_l} \sim (\ell_i \gamma_\mu P_L, R \ell_j)(\ell_k \gamma^\mu P_L, R \ell_l)$
 3-body decays $\ell_i \rightarrow \ell_j \ell_k \ell_l$, ...

 $\mathcal{O}^6_{\ell_i \ell_j q_k q_l} \sim (\ell_i \gamma_\mu P_L, R \ell_j)(q_k \gamma^\mu P_L, R q_l)$
 $\mu - e$ in Nuclei, meson decays, ...

 Vector/scalar: $\mathcal{O}^6_{H H \ell_i \ell_j} \sim (H^\dagger i D_\mu H)(\ell_i \gamma_\mu \ell_j)$
 3-body decays $\ell_i \rightarrow \ell_j \ell_k \ell_l$, ...

 \rightarrow presentation by G.M. Pruna, ...]

- Higher order - $\Delta \mathcal{L}^{7,8,...}$: $0\nu2\beta$, ν (transitional) magnetic moments, NSI, unitarity violation...
Constraining \mathcal{L}^{eff}: cLFV example

- Apply experimental bounds on (e.g.) cLFV observables to constrain $\frac{C^6_{ij}}{\Lambda^2}$

Hypotheses on:

1. **size of “new couplings”**
 - [Natural couplings] $C^6_{ij} \sim \mathcal{O}(1)$

2. **scale of “new physics”**
 - [Natural scale - delicate.]
 - direct discovery $\Lambda \sim \text{TeV}$

Despite its generality, caution in interpreting these effective limits!

- limits assume **dominance of one operator**; NP leads to several (interference...)
- contributions from **higher order operators** may be non-negligible if Λ is low...
- **multiple “new physics” scales:** $\mathcal{L}^{\text{eff}} = \mathcal{L}^{\text{SM}} + \frac{1}{\Lambda_{\text{LNV}}} C^5(m_\nu) + \frac{1}{\Lambda_{\text{LFV}}^2} C^6(\ell_i \leftrightarrow \ell_j) + \ldots$

Can these limits be used to extract information about $C^5(m_\nu)$??

| Effective coupling (example) | Bounds on Λ (TeV) (for $|C^6_{ij}| = 1$) | Bounds on $|C^6_{ij}|$ (for $\Lambda = 1$ TeV) | Observable |
|-----------------------------|---------------------------------|---------------------------------|------------|
| $C^\mu_\ell e$, $C^\tau_\ell e$, $C^\tau_\mu e$ | 6.3 $\times 10^4$ | 2.5 $\times 10^{-10}$ | $\mu \rightarrow e\gamma$ |
| $C^\mu_\ell e$, $C^\mu_\tau e$, $C^\tau_\mu e$ | 6.5 $\times 10^2$ | 2.4 $\times 10^{-6}$ | $\tau \rightarrow e\gamma$ |
| $C^\mu_\ell e$, $C^\mu_\tau e$, $C^\tau_\mu e$ | 6.1 $\times 10^2$ | 2.7 $\times 10^{-6}$ | $\tau \rightarrow \mu\gamma$ |

[Foruglio et al, 2015]