

Searches for lepton flavour violation at ATLAS

Geert-Jan Besjes (Niels Bohr Institute, University of Copenhagen) On behalf of the ATLAS collaboration

19th International Workshop on Neutrinos from Accelerators Uppsala, 26 September 2017

Overview

- Standard Model: 3 generations of fermions
- Fermions can change flavour:
 - CKM matrix (quarks)
 - PMNS matrix (leptons, spec. neutrinos)
- Charged lepton flavour violation?
- Not observed yet!
- Neutrino oscillations imply flavour violation in loops allowed in the SM
- However, implied charged lepton flavour violation *very* strongly constrained due to GIM mechanism
- Several BSM scenarios raise the branching ratios to levels reachable at the LHC
- Any observation is a discovery!

Spoiler: no such observations as of this conference

 $\mu \rightarrow e \gamma$ in the SM...

...cannot be seen at the LHC:

$$BR(\mu \to e\gamma) = \frac{3\alpha}{32\pi} \left| \sum_{i=2,3} U^*_{\mu i} U_{ei} \frac{\Delta m^2_{i1}}{M^2_W} \right|^2 \sim 10^{-54}$$

The diagram can be rotated to obtain e.g. LFV Z decays

Lepton flavour violation at the LHC

- Lepton flavour violation at the LHC focuses on objects as result from p-p collisions
- Muon decays:
 - $\cdot \mu \rightarrow e\gamma$
 - $\cdot \mu \rightarrow 3e$
 - $\cdot \mu \rightarrow e \text{ conversion}$
- Tau decays:
 - $\cdot \tau \rightarrow e\gamma$
 - $\cdot \tau \rightarrow 3$
- Meson decays:
 - $\cdot \quad B^{o}/D^{o} \rightarrow e\mu$
- In ATLAS, focus on:
 - Decays of Standard Model bosons (Z, Higgs)
 - · Decays of heavy (neutral) particles (Z', ...)
 - **τ** → 3μ

The Large Hadron Collider

The ATLAS experiment

- High precision tracking system (silicon pixels/strips and a transition radiation tracker), with new 4th pixel layer: insertable b-layer (IBL)
- Two calorimeters (EM: liquid Ar; hadronic: scintillating tiles + LAr endcaps)

- Muon spectrometer for muon identification (combined with tracker)
- Two large magnet systems (toroidal and solenoidal)
- An efficient trigger/DAQ system to make the most of our data

arXiv:1408.5774 arXiv:1604.07730

LFV decays of the SM Z boson

- Searches divided into fully leptonic channel and channels with taus ($Z \rightarrow e\mu$ and $Z \rightarrow \tau I$)
- Uses the full 2012 20.3 fb⁻¹ dataset at $\sqrt{s} = 8$ TeV
- Channel-dependent strategies required, depending on presence of tau
- Without taus:
 - Find an excess on the Z peak $m(e\mu)$
 - Need to reject events with missing transverse energy
 - · Major background Z \rightarrow II decays and leftover leptonic Z $\rightarrow \tau \tau$ events
- With taus:
 - · Focus on hadronic tau decays; split between flavours of lepton
 - · Major background becomes $Z \rightarrow \tau \tau$ events
 - · Missing transverse energy can no longer be straightforwardly exploited
 - Data driven techniques to estimate taus faked by jets
 - · Clever techniques needed to separate $Z \rightarrow \tau_{lep} \tau_{had}$ from signal
 - · No result on Z $\rightarrow \tau$ e channel

arXiv:1408.5774

LFV decays of the SM Z boson: $Z \rightarrow e\mu$

- Require two opposite-charge different-flavour leptons
- Reject events with high missing transverse momentum (e.g. WW, Ztautau)
- Reject events with high-pT jet activity (e.g. ttbar)
- · This way, obtain a "clean" invariant mass spectrum
- 3rd order Chebychev polynomial fit to background

10⁹

arXiv:1408.5774

 $Z \rightarrow ee$

Ζ → ττ

LFV decays of the SM Z boson: $Z \rightarrow e\mu$

Branching ratio estimate as ratio ٠ of 95% limit on $Z \rightarrow e\mu$ events and total Z production:

$${\rm BR}(Z\to e\mu) < \frac{N_{95\%}}{\epsilon_{e\mu}N_Z}$$

- N_z estimated as weighted average • from dilepton decays
- Relative ratios Z \rightarrow ee and Z $\rightarrow \mu\mu$ • from events in window between 70 and 110 GeV
- Resulting limit: ٠

 $BR(Z \to e\mu) < 7.5 \times 10^{-7}$

LFV decays of the SM Z boson: Z $\rightarrow \tau_{had}\mu$

- Exploit fact that hadronic decay of tau lepton leads to missing energy
 - \cdot Can construct transverse mass of $\tau\textsc{-MET}$ and lepton-MET systems
 - $\cdot~$ In case missing transverse energy aligned with tau, mT($\!\tau,$ MET) is small
 - Signal dominated by low mT(τ , MET) and moderate mT(lepton, MET)
 - Rectangular selections in two dimensional phase space define regions
- Reject events with b-jets and require $|\eta(\tau) \eta(l)| < 2$ to reject W+jets and multijet events
- Irreducible backgrounds: $Z \rightarrow \tau \tau$, diboson (WW), $H \rightarrow \tau \tau$ and top

LFV decays of the SM Z boson: Z $\rightarrow \tau_{had}\mu$

- Events then categorised using Missing Mass Calculator (MMC)
- · Attempts to minimise likelihood functions to take into account missing energy from neutrino
- Adapted parametrisation from $H \rightarrow \tau \tau$ searches
- Background modelling combination of MC and data-driven corrections
 - · Dedicated control regions used to use normalise real backgrounds
 - Multijets and fakes from data using opposite- minus same-sign method:

- · Correction factor rQCD is ratio OS/SS measured in dedicated multijet control region
- · Simultaneous likelihood fit of signal region plus W and top control regions to extract signal
- No Z control region: $Z \rightarrow \tau \tau$ taken from embedded sample of $Z \rightarrow \tau \tau$ data

• *Embedding*: replace muons with simulated taus

LFV decays of the SM Z boson: $Z \rightarrow \tau_{had}\mu$

$\operatorname{Br}(Z \to \mu \tau)[10^{-5}]$	SR1	$\mathbf{SR2}$	Combined
Expected limit Observed limit Best fit	$2.6^{+1.1}_{-0.7}$ 1.5 $-2.1^{+1.2}_{-1.3}$	$\begin{array}{c} 6.4^{-1.8}_{+2.8} \\ 7.9 \\ 2.6^{+2.9}_{-2.6} \end{array}$	$2.6^{+1.1}_{-0.7}$ 1.7 $-1.6^{+1.3}_{-1.4}$

arXiv:1508.03372 arXiv:1604.07730

LFV decays of the Higgs boson

- Part of an effort to study Higgs properties
- · LFV couplings can be introduced through effective field theories
- Searches can be categorised as $H \rightarrow e\mu$, and $H \rightarrow \tau\mu$ and $H \rightarrow \tau e$
- · No published ATLAS result on the first channel
- Results with taus use the full 2012 20.3 fb⁻¹ dataset at $\sqrt{s} = 8$ TeV
- Leptonic tau decays also considered
 - Exploit angular separation between leptons
 - · Collinear mass approximation for lepton from tau decay
- Strategy with hadronic taus very similar to searches for Z decays
 - Kinematic windows shift towards higher invariant mass
 - · Fewer Z $\rightarrow \tau \tau$ events as background
 - $\cdot~$ H $\rightarrow \tau\tau$ events become relevant
 - Sources of reducible backgrounds remain the same

Results in more stringent limits than indirect searches!

LFV decays of the Higgs boson: $H \rightarrow \tau_{lep}e$, $H \rightarrow \tau_{lep}\mu$

- Events selected an opposite-sign electron-muon pair
 - Highest- p_T object labelled I_1 , the other I_2
 - Used to define eµ and eµ categories
- Two exclusive signal regions: with no central jets, or at least one central jet
- Collinear mass approximation used to reconstruct Higgs mass:

$$m_{\rm coll} = \sqrt{2p_{\rm T}^{\ell_1} \left(p_{\rm T}^{\ell_2} + E_{\rm T}^{\rm miss}\right) \left(\cosh \Delta \eta - \cos \Delta \phi\right)}$$

- Correction factors for asymmetry between categories derived
 - Non-prompt leptons
 - Estimated using a matrix method
 - Efficiencies for prompt and non-prompt estimated using tag-and-probe method
 - Different trigger and reconstruction efficiencies
 - Since leading lepton is on trigger plateau, factorises to a function of $pT(I_2)$
 - $\cdot\,$ Determined in 3 bins: 12 to 20 GeV, 20 to 30 GeV, and above 30 GeV

Combined statistical model fits the symmetric component, non-prompt contributions

LFV decays of the Higgs boson: $H \rightarrow \tau_{lep}e$, $H \rightarrow \tau_{lep}\mu$

Background modelling before asymmetry corrections

LFV decays of the Higgs boson: $H \rightarrow \tau_{lep}e$, $H \rightarrow \tau_{lep}\mu$

arXiv:1508.03372 arXiv:1604.07730

LFV decays of the Higgs boson: $H \rightarrow \tau_{had}e$, $H \rightarrow \tau_{had}\mu$

- Very similar methodology to analysis in Z channel
 - Slightly different kinematic selections due to m(H) versus m(Z)
 - Again two signal regions per lepton flavour defined
- Also relies on the MMC to extract a signal

arXiv:1508.03372 arXiv:1604.07730

LFV decays of the Higgs boson

High-mass dilepton searches

- LFV processes could involve decaying heavy particles
- · These lead to high-mass different-flavour dilepton events
- Uses the run-2 dataset from 2015 ($\sqrt{s} = 13$ TeV) of 3.2 fb-1
- Basic strategy:
 - · Select two events with different flavours of leptons in 3 channels
 - Construct invariant mass distribution, taking fake taus into account
 - Extrapolate top background to high mass
 - Top quark background dominates eµ channel;
 W+jets in channels with taus
- Interpretations in three models using a Bayesian method (binned marginal likelihood):
 - $\cdot\,$ Z': heavy gauge boson with same quark couplings as Z and LFV couplings Q_{ij}
 - *Quantum Black Holes*: QBHs produced at Plank scale; could violate lepton flavour in decay
 - *RPV SUSY*: most SUSY models introduce *R-parity* to prevent proton decay; however, *R-parity* violating SUSY could still violate lepton *or* baryon number separately

High-mass dilepton searches

- Backgrounds involve:
 - · top (ttbar, single-t), DY \rightarrow II, diboson (MC);
 - W+jets (MC+data-driven);
 - and multijet events (data-driven)
- Tau fake rate measured in data in a W+jets control region; applied as weight to W+jets
 - Normalisation estimated in signal-free subset of signal region with MET > 30 GeV and pT(tau) < 150 GeV
- Top background extrapolated to high mass through fit for each channel
 - Dependency on fit range is source of systematic error

Process	$m_{e\mu} < 600 \text{ GeV}$	$m_{e\mu} > 600 \mathrm{GeV}$
Top quark	1190 ± 140	22 ± 5
Diboson	159 ± 17	4.9 ± 0.9
Multi-jet and W+jets	55 ± 11	2.7 ± 1.7
$Z/\gamma^* o \ell\ell$	14.5 ± 2.0	0.18 ± 0.04
Total SM background	1410 ± 150	30 ± 7
$SM+Z' (M_{Z'} = 2 \text{ TeV})$	-	75 ± 13
$SM + \tilde{\nu}_{\tau} (M_{\tilde{\nu}_{\tau}} = 2 \text{ TeV})$	-	40 ± 8
SM+QBH RS $n = 1$ ($M_{\text{th}} = 2$ TeV)	-	44 ± 9
Data	1463	25

(a) $e\mu$ channel

High-mass dilepton searches

- No significant deviations from the SM observed
- Slight deficit in tau-muon channel
- Single event at 2.1 TeV in the electron-muon channel

High-mass dilepton searches

For Z', only one decay allowed at the same time.

For RPV, identical coupling to tau sneutrino for all channels.

Neutrinoless $\tau \rightarrow 3\mu$ decays

- Decays involving tau leptons and muons are golden channels for LFV searches
- In the SM, BR($\tau \rightarrow 3\mu$) is approx 10⁻¹⁴
- BSM scenarios increase the branching ratio to 10^{-10} to 10^{-8}
- Current limits from b-physics (Babar, Belle, LHCb) at 10-8
- Difficult search to perform at hadron colliders: very low energy muons
- · Need to exploit multi-object triggers to record enough data
- Uses the full 20.3 fb⁻¹ dataset at $\sqrt{s} = 8$ TeV
- Basic strategy:
 - select 3 muons from the same vertex;
 - categorise the events according to the 3-muon invariant mass;
 - fit sidebands to obtain yield in mass window;
 - $\cdot~$ extract a limit at 90% CL

Neutrinoless $\tau \rightarrow 3\mu$ decays

- Use decays $W \rightarrow \tau \nu \rightarrow 3 \mu \nu$
- Tau lepton produced with a transverse momentum, typically 25 to 50 GeV
- Muons from tau decay close in space
- Neutrino carries away missing transverse energy
- Basic selection: 3 muons from same vertex with $|m(3\mu) m(\tau)| < 1$ GeV
- Require $m(3\mu) < 2.5 \text{ GeV}; pT(\mu) > 2.5 \text{ GeV}$
- Rely on several multi-muon triggers
- Events then categorised according to m(3µ)
- · Loose selection to train BDT
- Study rejection in sidebands; tighter selection defined through optimisation on limit

Region	Range in $m_{3\mu}$ [MeV]
Signal region	[1713, 1841]
Blinded region	[1690, 1870]
Sideband region	[1450, 1690] and $[1870, 2110]$
Training region	[750, 1450] and $[2110, 2500]$

Neutrinoless $\tau \rightarrow 3\mu$ decays

- Loose selection used to train BDT
- Tighter selection adds several additional selections and a loose BDT score requirement $x_{\rm o}$
- BDT score fit in looser category; fraction of selected events used for scaling mass distributions
 - + Events with $x > x_o$ used for fit
 - Scales background with fraction of events with tighter selection $x > x_1$
- Background rejection as function of score optimised by maximising expected exclusion limit
- Single event with 1860 MeV observed
- 90% CL limit BR(τ → 3μ) < 3.76 x 10⁻⁷
- Not competitive yet with LHCb or b-factories; shows potential in ATLAS for such searches with larger dataset
- Expect to be competitive with Belle at the end of run 2 (data taking up to end 2018)

Summary

- Presented several searches at 8 and 13 TeV
- No evidence or discovery of LFV processes (yet?)
- Many more searches using the full 2015+2016 dataset in progress...
- ...as well as ongoing preparations to exploit the entire run-2 dataset (expect around 100fb⁻¹)
- Stay tuned for updates of several of these searches!

Backup

$Z \rightarrow \tau_{had} \mu/e$: signal and control regions

-			-	-
Cut	SR1	SR2	WCR	TCR
$p_{\mathrm{T}}(\mu)$	>30 GeV	>30 GeV	>30 GeV	>30 GeV
$p_{ m T}(au_{ m had})$	>30 GeV	>30 GeV	>30 GeV	>30 GeV
$ \eta(\mu) - \eta(\tau_{had}) $	<2	<2	<2	<2
$m_{\mathrm{T}}^{\mu,E_{\mathrm{T}}^{\mathrm{miss}}}$	>30 GeV and <75 GeV	<30 GeV	>60 GeV	_
$m_{\mathrm{T}}^{ au_{\mathrm{had}},E_{\mathrm{T}}^{\mathrm{miss}}}$	<20 GeV	<45 GeV	>40 GeV	_
$N_{\rm jet}$	_	_	_	>1
N_{b-jet}	0	0	0	>0

$Z \rightarrow \tau_{had} \mu/e$: signal region yields

	SR1	SR2	
Signal	$86 \pm 2 \pm 22$	$56\pm 2\pm 18$	
$Z \to \tau \tau$	$3260 \pm 30 \pm 60$	$7060 \pm 40 \pm 150$	
W+jets	$1350 \pm 70 \pm 110$	$590 \pm 50 \pm 70$	
Same–Sign events	$1110 \pm 40 \pm 100$	$930 \pm 30 \pm 90$	
$VV + Z \rightarrow \mu\mu$	$410 \pm 60 \pm 50$	$240 \pm 60 \pm 60$	
$H \to \tau \tau$	$25.1 \pm 0.5 \pm 3.0$	$41 \pm 1 \pm 5$	
Тор	$22 \pm 4 \pm 4$	$15\pm 4\pm 4$	
Total background	$6170 \pm 100 \pm 100$	$8880 \pm 100 \pm 140$	
Data	6134	8982	

$H \rightarrow \tau_{had} \mu/e$: signal and control regions

Criterion	SR1	SR2	WCR	TCR
$E_{\mathrm{T}}(e)$	>26 GeV	>26 GeV	>26 GeV	>26 GeV
$p_{\mathrm{T}}(au_{\mathrm{had}})$	>45 GeV	>45 GeV	>45 GeV	>45 GeV
$ \eta(e) - \eta(\tau_{\text{had}}) $	<2	<2	<2	<2
$m_{\mathrm{T}}^{e,E_{\mathrm{T}}^{\mathrm{miss}}}$	>40 GeV	<40 GeV	>60 GeV	_
$m_{\mathrm{T}}^{ au_{\mathrm{had}},E_{\mathrm{T}}^{\mathrm{miss}}}$	<30 GeV	<60 GeV	>40 GeV	_
N _{jet}	_	_	-	≥2
N_{b-jet}	0	0	0	≥1

$H \rightarrow \tau_{had} \mu/e$: signal region yields

	SR1	SR2
LFV signal (Br($H \rightarrow e\tau$) = 1.0%)	$75 \pm 1 \pm 8$	$59 \pm 1 \pm 8$
W+jets	740 ±80 ±110	$370 \pm 60 \pm 70$
Same-Sign events	$390 \pm 20 \pm 60$	$570 \pm 30 \pm 80$
$Z \to \tau \tau$	$116 \pm 8 \pm 11$	$245 \pm 11 \pm 20$
VV and $Z \rightarrow ee(jet \rightarrow \tau_{had}^{misid})$	$71 \pm 31 \pm 30$	$60 \pm 20 \pm 40$
$Z \rightarrow ee(e \rightarrow \tau_{\rm had}^{\rm misid})$	$69 \pm 17 \pm 11$	$320 \pm 40 \pm 40$
$t\bar{t}$ and single top	$18 \pm 5 \pm 4$	$10.2\pm\ 2.6\pm\ 2.2$
$H \to \tau \tau$	$4.6 \pm 0.2 \pm 0.7$	$10.5 \pm 0.3 \pm 1.5$
Total background	$1410 \pm 90 \pm 70$	$1590 \pm 80 \pm 70$
Data	1397	1501

$H \rightarrow \mu e$: signal regions

SR _{noJets}	SRwithJets
$e^{\pm}\mu^{\mp}$	$e^{\pm}\mu^{\mp}$
veto	veto
0	≥ 1
0	0
$\geq 35 \text{ GeV}$	$\geq 35 \text{ GeV}$
$\geq 12 \text{ GeV}$	$\geq 12 \text{ GeV}$
≤ 2.4	≤ 2.4
≤ 2.4	≤ 2.4
≤ 0.7	≤ 0.5
≥ 2.3	≥ 1.0
≥ 2.5	≥ 1.0
\geq 7 GeV	$\geq 1 \text{ GeV}$
	$\begin{array}{c} \mathrm{SR}_{\mathrm{noJets}} \\ e^{\pm}\mu^{\mp} \\ \mathrm{veto} \\ 0 \\ 0 \\ \geq 35 \ \mathrm{GeV} \\ \geq 12 \ \mathrm{GeV} \\ \leq 2.4 \\ \leq 2.4 \\ \leq 2.4 \\ \leq 0.7 \\ \geq 2.3 \\ \geq 2.5 \\ \geq 7 \ \mathrm{GeV} \end{array}$

$H \rightarrow \mu e$: fit results

$f\left(p_{\mathrm{T}}^{\ell_{2}} ight)$		LFV Signal, Br=1%	Total Backg.	Observed
1.11 ± 0.06	еµ µе	$14.9 \pm 0.4 \pm 2.7 \\ 10.7 \pm 0.4 \pm 2.3$	$1219 \pm 24 \pm 27$ $1033 \pm 25 \pm 20$	1212 1035
1.07 ± 0.08	еµ µе	$15.1 \pm 0.4 \pm 2.7$ $12.4 \pm 0.4 \pm 2.2$	$998 \pm 22 \pm 25$ $950 \pm 23 \pm 21$	995 950
1.01 ± 0.07	еµ µе	$12.5 \pm 0.4 \pm 2.2 \\ 11.4 \pm 0.4 \pm 2.0$	$455 \pm 17 \pm 16$ $458 \pm 16 \pm 14$	452 457
$f\left(p_{\mathrm{T}}^{\ell_{2}}\right)$		LFV Signal, Br=1%	Total Backg.	Observed
1.07 ± 0.10	еµ µе	$5.9 \pm 0.3 \pm 1.1$ $3.9 \pm 0.2 \pm 0.9$	$222 \pm 10 \pm 11$ $181 \pm 10 \pm 9$	220 182
1.24 ± 0.16	еµ µе	$5.4 \pm 0.2 \pm 1.1$ $4.5 \pm 0.2 \pm 0.9$	$187 \pm 9 \pm 11$ $161 \pm 9 \pm 9$	187 161
1.13 ± 0.10	еµ µе	$5.5 \pm 0.2 \pm 1.0$ $4.9 \pm 0.2 \pm 0.9$	$251 \pm 11 \pm 12$ $229 \pm 11 \pm 11$	250 229
	$f(p_{\rm T}^{\ell_2})$ 1.11 ± 0.06 1.07 ± 0.08 1.01 ± 0.07 $f(p_{\rm T}^{\ell_2})$ 1.07 ± 0.10 1.24 ± 0.16 1.13 ± 0.10	$f(p_{\rm T}^{\ell_2})$ $e\mu$ 1.11 ± 0.06 $e\mu$ μe μe 1.07 ± 0.08 $e\mu$ μe μe 1.01 ± 0.07 $e\mu$ μe μe 1.07 ± 0.10 $e\mu$ μe μe 1.24 ± 0.16 $e\mu$ μe μe 1.13 ± 0.10 $e\mu$ μe	$f\left(p_{\rm T}^{\ell_2}\right)$ LFV Signal, Br=1% 1.11 ± 0.06 $e\mu$ $14.9 \pm 0.4 \pm 2.7$ μe $10.7 \pm 0.4 \pm 2.3$ 1.07 ± 0.08 $e\mu$ $15.1 \pm 0.4 \pm 2.7$ μe $12.4 \pm 0.4 \pm 2.2$ 1.01 ± 0.07 $e\mu$ $12.5 \pm 0.4 \pm 2.2$ 1.01 ± 0.07 $e\mu$ $12.5 \pm 0.4 \pm 2.2$ 1.07 ± 0.10 $e\mu$ $3.9 \pm 0.3 \pm 1.1$ 1.07 ± 0.10 $e\mu$ $5.9 \pm 0.3 \pm 1.1$ 1.24 ± 0.16 $e\mu$ $5.4 \pm 0.2 \pm 1.1$ μe $4.5 \pm 0.2 \pm 0.9$ 1.13 ± 0.10 $e\mu$ $5.5 \pm 0.2 \pm 1.0$ μe $4.9 \pm 0.2 \pm 0.9$	$f(p_T^{\ell_2})$ LFV Signal, Br=1%Total Backg. 1.11 ± 0.06 $e\mu$ $14.9 \pm 0.4 \pm 2.7$ $1219 \pm 24 \pm 27$ 1.07 ± 0.08 $e\mu$ $10.7 \pm 0.4 \pm 2.3$ $1033 \pm 25 \pm 20$ 1.07 ± 0.08 $e\mu$ $15.1 \pm 0.4 \pm 2.7$ $998 \pm 22 \pm 25$ 1.01 ± 0.07 $e\mu$ $12.5 \pm 0.4 \pm 2.2$ $950 \pm 23 \pm 21$ 1.01 ± 0.07 $e\mu$ $12.5 \pm 0.4 \pm 2.2$ $455 \pm 17 \pm 16$ 1.01 ± 0.07 $e\mu$ $12.5 \pm 0.4 \pm 2.0$ $458 \pm 16 \pm 14$ 1.07 ± 0.10 $e\mu$ $5.9 \pm 0.3 \pm 1.1$ $222 \pm 10 \pm 11$ 1.07 ± 0.10 $e\mu$ $5.9 \pm 0.3 \pm 1.1$ $222 \pm 10 \pm 11$ 1.24 ± 0.16 $e\mu$ $5.4 \pm 0.2 \pm 0.9$ $181 \pm 10 \pm 9$ 1.13 ± 0.10 $e\mu$ $5.5 \pm 0.2 \pm 1.0$ $251 \pm 11 \pm 12$ μe $4.9 \pm 0.2 \pm 0.9$ $229 \pm 11 \pm 11$

LFV Higgs results

Channel	Category	Expected limit [%]	Observed limit [%]	Best fit Br [%]
	SR1	$2.81^{+1.06}_{-0.79}$	3.0	$0.33^{+1.48}_{-1.59}$
$H \rightarrow e \tau_{\rm had}$	SR2	$2.95^{+1.16}_{-0.82}$	2.24	$-1.33^{+1.56}_{-1.80}$
	Combined	$2.07^{+0.82}_{-0.58}$	1.81	$-0.47^{+1.08}_{-1.18}$
	SR _{noJets}	$1.66^{+0.72}_{-0.46}$	1.45	$-0.45^{+0.89}_{-0.97}$
$H \rightarrow e \tau_{\rm lep}$	SR _{withJets}	$3.33^{+1.60}_{-0.93}$	3.99	$0.74^{+1.59}_{-1.62}$
	Combined	$1.48\substack{+0.60\\-0.42}$	1.36	$-0.26^{+0.79}_{-0.82}$
$H \rightarrow e \tau$	Combined	$1.21^{+0.49}_{-0.34}$	1.04	$-0.34^{+0.64}_{-0.66}$
	SR1	$1.60^{+0.64}_{-0.45}$	1.55	$-0.07^{+0.81}_{-0.86}$
$H \rightarrow \mu \tau_{\rm had}$	SR2	$1.75^{+0.71}_{-0.49}$	3.51	$1.94^{+0.92}_{-0.89}$
	Combined	$1.24_{-0.35}^{+0.50}$	1.85	$0.77_{-0.62}^{+0.62}$
	SR _{noJets}	$2.03^{+0.93}_{-0.57}$	2.38	$0.31^{+1.06}_{-0.99}$
$H \rightarrow \mu \tau_{\rm lep}$	SRwithJets	$3.57^{+1.74}_{-1.00}$	2.85	$-1.03^{+1.66}_{-1.82}$
	Combined	$1.73^{+0.74}_{-0.49}$	1.79	$0.03^{+0.88}_{-0.86}$
$H ightarrow \mu \tau$	Combined	$1.01^{+0.40}_{-0.29}$	1.43	$0.53^{+0.51}_{-0.51}$

High-mass LFV: results eµ

Process	$m_{e\mu} < 600 \text{ GeV}$	$m_{e\mu} > 600 \text{ GeV}$
Top quark	1190 ± 140	22 ± 5
Diboson	159 ± 17	4.9 ± 0.9
Multi-jet and W+jets	55 ± 11	2.7 ± 1.7
$Z/\gamma^* o \ell\ell$	14.5 ± 2.0	0.18 ± 0.04
Total SM background	1410 ± 150	30 ± 7
$SM+Z' (M_{Z'} = 2 \text{ TeV})$	-	75 ± 13
$SM + \tilde{\nu}_{\tau} (M_{\tilde{\nu}_{\tau}} = 2 \text{ TeV})$	-	40 ± 8
SM+QBH RS $n = 1$ ($M_{\text{th}} = 2$ TeV)	-	44 ± 9
Data	1463	25

High-mass LFV: results eτ

Process	$m_{e\tau} < 600 \mathrm{GeV}$	$m_{e\tau} > 600 \mathrm{GeV}$
Top quark	790 ± 190	25 ± 9
Diboson	109 ± 26	6.2 ± 1.9
Multi-jet and W+jets	3200 ± 800	45 ± 14
$Z/\gamma^* ightarrow \ell\ell$	1030 ± 240	5.2 ± 1.4
Total SM background	5200 ± 1300	81 ± 25
$SM+Z' (M_{Z'} = 1.5 \text{ TeV})$	-	185 ± 34
$\text{SM} + \tilde{\nu}_{\tau} \ (M_{\tilde{\nu}_{\tau}} = 1.5 \text{ TeV})$	-	105 ± 27
SM+QBH RS $n = 1$ ($M_{\text{th}} = 1.5$ TeV)	-	122 ± 28
Data	5416	111

High-mass LFV: results μτ

Process	$m_{\mu\tau} < 600 \text{ GeV}$	$m_{\mu\tau} > 600 \text{ GeV}$
Top quark	580 ± 140	21 ± 7
Diboson	84 ± 20	4.8 ± 1.4
Multi-jet and W+jets	1900 ± 500	34 ± 12
$Z/\gamma^* ightarrow \ell\ell$	610 ± 140	2.6 ± 0.7
Total SM background	3200 ± 800	63 ± 20
$SM+Z' (M_{Z'} = 1.5 \text{ TeV})$	-	130 ± 28
$\text{SM} + \tilde{\nu}_{\tau} \ (M_{\tilde{\nu}_{\tau}} = 1.5 \text{ TeV})$	-	78 ± 22
SM+QBH RS $n = 1$ ($M_{\text{th}} = 1.5$ TeV)	-	90 ± 23
Data	3239	48

High-mass LFV: uncertainties

Source	$m_{\ell\ell'} = 1 \text{ TeV}$		$m_{\ell\ell'} = 2 \text{ TeV}$			$m_{\ell\ell'} = 3 \text{ TeV}$			
Source	еμ	$e\tau$	μau	еμ	$e\tau$	μau	еμ	$e\tau$	μau
PDF uncertainty	17%	15%	15%	35%	38%	35%	70%	75%	70%
Luminosity	5%	5%	5%	5%	5%	5%	5%	5%	5%
Statistical	18%	11%	15%	80%	27%	27%	120%	28%	30%
Reducible background	5%	29%	40%	5%	35%	75%	5%	45%	85%
Top quark production modelling	5%	3%	4%	12%	4%	5%	15%	10%	8%
Electron trigger efficiency	1%	1%	N/A	1%	1%	N/A	1%	1%	N/A
Electron identification	2%	2%	N/A	2%	2%	N/A	2%	2%	N/A
Electron energy scale and resolution	3%	3%	N/A	3%	3%	N/A	3%	3%	N/A
Muon reconstruction efficiency	2%	N/A	2%	4%	N/A	4%	6%	N/A	6%
Muon scale and resolution	4%	N/A	4%	12%	N/A	12%	20%	N/A	20%
Muon trigger efficiency	2%	N/A	2%	2%	N/A	2%	2%	N/A	2%
Tau identification	N/A	4%	4%	N/A	5%	5%	N/A	6%	6%
Tau reconstruction	N/A	3%	3%	N/A	4%	4%	N/A	4%	4%
Tau energy calibrations	N/A	2%	2%	N/A	3%	3%	N/A	4%	4%
Total	27%	35%	44%	90%	59%	90%	140%	90%	120%
SM Background in $m_{\ell\ell'} \pm 0.1 \cdot m_{\ell\ell'}$	3.9	11.9	11.4	0.09	0.55	0.49	0.002	0.014	0.017

High-mass LFV: highest event masses

Channel	$m_{\ell\ell'}$ [GeV]	E_T^{miss} [GeV]	Lepton type	$p_{T_{\ell}}$ [GeV]	η_ℓ	ϕ_ℓ
<i>e</i> μ 2088.7	2088 7	72	μ^+	617	0.29	0.4
	12	<i>e</i> ⁻	1164	1.64	-2.8	
<i>eτ</i> 1633.8	1633.8	85	e ⁻	412	-1.26	1.8
	0.3	$ au^+$	409	1.33	-1.5	
μτ 1665.7	130.5	μ^+	159	2.20	2.7	
		$ au^-$	81	-2.19	-0.5	

High-mass LFV: event display eµ

High-mass LFV: event display ет

High-mass LFV: event display μτ

High-mass LFV: acceptance * efficiency

